【題目】不等式的解集為,則不等式的解集為( )
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司共有60位員工,為提高員工的業(yè)務(wù)技術(shù)水平,公司擬聘請專業(yè)培訓(xùn)機構(gòu)進行培訓(xùn).培訓(xùn)的總費用由兩部分組成:一部分是給每位參加員工支付400元的培訓(xùn)材料費;另一部分是給培訓(xùn)機構(gòu)繳納的培訓(xùn)費.若參加培訓(xùn)的員工人數(shù)不超過30人,則每人收取培訓(xùn)費1000元;若參加培訓(xùn)的員工人數(shù)超過30人,則每超過1人,人均培訓(xùn)費減少20元.設(shè)公司參加培訓(xùn)的員工人數(shù)為x人,此次培訓(xùn)的總費用為y元.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)請你預(yù)算:公司此次培訓(xùn)的總費用最多需要多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:ax-by-1=0(a、b不同時為0),l2:(a+2)x+y+a=0.
(1)若b=0且l1⊥l2,求實數(shù)a的值;
(2)當(dāng)b=2,且l1∥l2時,求直線l1與l2之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)確定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(﹣1,1)上有零點,求a的取值范圍;
(3)若對任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, 平面, , , 是的中點, 是等腰三角形, 是的中點, 是上一點.
(Ⅰ)若,證明: 平面;
(Ⅱ)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|.
(1)解不等式:f(x+1)+f(x+2)<4;
(2)已知a>2,求證:x∈R,f(ax)+af(x)>2恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中, ,斜邊AB=4,D是AB中點,現(xiàn)將Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個圓錐,點C為圓錐底面圓周上一點,且∠BOC=90°,
(1)求圓錐的側(cè)面積;
(2)求直線CD與平面BOC所成的角的大;(用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過點作圓的切線,切點分別為.直線恰好經(jīng)過的右頂點和上頂點.
(1)求橢圓的方程;
(2)如圖,過橢圓的右焦點作兩條互相垂直的弦, .
①設(shè)中點分別為,證明:直線必過定點,并求此定點坐標(biāo);
②若直線, 的斜率均存在時,求由四點構(gòu)成的四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 是拋物線上兩點,且與兩點橫坐標(biāo)之和為3.
(1)求直線的斜率;
(2)若直線,直線與拋物線相切于點,且,求方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com