【題目】(1)已知,用分析法證明: ;

(2)已知 ,用反證法證明: 都大于零.

【答案】(1) 見解析(2) 見解析

【解析】試題分析:(1)用分析法證明, ;(2)假設(shè)不都大于零,即至少有一個(gè)小于零或等于零,這時(shí)需要逐個(gè)討論不是正數(shù)的情形.但注意到條件的特點(diǎn)(任意交換的位置不改變命題的條件),我們只要討論其中一個(gè)數(shù)(例如),其他兩個(gè)數(shù)例如與這種情形類似.

試題解析:(1)因?yàn)?/span>

欲使

由已知得最后一個(gè)不等式成立,

故原不等式成立;

(2) 假設(shè)不都大于零,即至少有一個(gè)小于零或等于零

(ⅰ) 若某一個(gè)等于零,由,與矛盾.

(ⅱ) 若某一個(gè)小于零,不妨設(shè),由,得

,得,那么,得,

,結(jié)合,得矛盾.

結(jié)合(1)、(2) 知都大于零.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長(zhǎng)為2的正三角形, , .

(Ⅰ)求證:平面平面

(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)f(x)=sin(2x+ ),下列命題: ①函數(shù)圖象關(guān)于直線x=﹣ 對(duì)稱;
②函數(shù)圖象關(guān)于點(diǎn)( ,0)對(duì)稱;
③函數(shù)圖象可看作是把y=sin2x的圖象向左平移個(gè) 單位而得到;
④函數(shù)圖象可看作是把y=sin(x+ )的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變)而得到;其中正確的命題是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)來臨,有農(nóng)民工兄弟、、四人各自通過互聯(lián)網(wǎng)訂購(gòu)回家過年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若、、獲得火車票的概率分別是,其中,又成等比數(shù)列,且兩人恰好有一人獲得火車票的概率是.

(1)求的值;

(2)若、是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設(shè)表示、、能夠回家過年的人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改進(jìn)后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5


(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的回歸方程 = x+
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤? (參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)計(jì)算回歸系數(shù) , .公式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系中,曲線的參數(shù)方程為:為參數(shù)).

(1)求曲線的直角坐標(biāo)方程與曲線的普通方程;

(2)若用代換曲線的普通方程中的得到曲線的方程,若分別是曲線和曲線上的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬在2017年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費(fèi)用(單位:萬元)()滿足 為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬元.每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

(1)將2017年該產(chǎn)品的利潤(rùn)(單位:萬元)表示為年促銷費(fèi)用(單位:萬元)的函數(shù);

(2)該廠家2017年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案