【題目】設(shè)函數(shù)f(x)=2cos2x﹣cos(2x﹣).
(1)求f(x)的周期和最大值;
(2)已知△ABC中,角A.B.C的對邊分別為A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.
【答案】(1)周期為π,最大值為2.(2)
【解析】
(1)利用倍角公式降冪,展開兩角差的余弦,將函數(shù)的關(guān)系式化簡余弦型函數(shù),可求出函數(shù)的周期及最值;
(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.
(1)函數(shù)f(x)=2cos2x﹣cos(2x)
=1+cos2x
=cos(2x)+1,
∵﹣1≤cos(2x)≤1,
∴T,f(x)的最大值為2;
(2)由題意,f(π﹣A)=f(﹣A)=cos(﹣2A)+1,
即:cos(﹣2A),
又∵0<A<π,
∴2A,
∴﹣2A,即A.
在△ABC中,b+c=2,cosA,
由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,
由于:bc,當(dāng)b=c=1時,等號成立.
∴a2≥4﹣1=3,即a.
則a的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線為參數(shù)),為參數(shù)).
(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若上的點對應(yīng)的參數(shù)為為上的動點,求的中點到直線為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,其中.函數(shù)的圖象過點,點與其相鄰的最高點的距離為4.
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)計算的值;
(Ⅲ)設(shè)函數(shù),試討論函數(shù)在區(qū)間 [0,3] 上的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2是雙曲線C: (a>0,b>0)的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),.
(1)若在上單調(diào)遞增,求正數(shù)的最大值;
(2)若函數(shù)在內(nèi)恰有一個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個各面都涂了油漆的正方體,切割為125個同樣大小的小正方體,經(jīng)過攪拌后,從中隨機(jī)取一個小正方體,記它的涂漆面數(shù)為X,則X的均值E(X)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 已知a1=1, ,n∈N* .
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com