(本題滿分12分)如圖,四棱錐中,底面是邊長為4的正方形,的交點,平面是側(cè)棱的中點,異面直線所成角的大小是60.

(Ⅰ)求證:直線平面
(Ⅱ)求直線與平面所成角的正弦值.
(Ⅰ)見解析;(Ⅱ)。

試題分析:(Ⅰ)連結(jié),……1分四邊形是正方形,的中點,…2分
是側(cè)棱的中點,//.又平面平面,直線//平面.…………4分
(Ⅱ)所成角為,,為等邊三角形......5分在中,,建立如圖空間坐標(biāo)系,



…………………7分
設(shè)平面的法向量,則有
    解得…………9分
直線與平面所成角記為,則…12分
點評:本題考查直線與平面平行的證明及直線與平面所成角的正弦值的求法.解題時要認(rèn)真審題,仔細(xì)解答,注意向量法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個全等的等腰直角三角形,O為BD的中點,且AB=AD=CB=CD=2,AC=

(1)當(dāng)時,求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正三棱柱中,側(cè)面是邊長為2的正方形,的中點,在棱上.

(1)當(dāng)時,求三棱錐的體積.
(2)當(dāng)點使得最小時,判斷直線是否垂直,并證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從正方體的8個頂點中選取4個點,連接成一個四面體,則這個四面體可能為:①每個面都是直角三解形,②每個面都是等邊三解形,有且只有一個面是直角三角形,④有且只有一個面是等邊三角形,其中正確的說法有                (寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱錐的高為,若三個側(cè)面兩兩垂直,則一定為△的(   )
A.垂心 B.外心C.內(nèi)心D.重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正方體中,中點,則與平面所成角的正弦值為           ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將4個半徑都是的球體完全裝入底面半徑是的圓柱形桶中,則桶的最小高度是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在棱柱中滿足 (  )
A.只有兩個面平行B.所有面都平行
C.所有面都是平行四邊形D.兩對面平行,且各側(cè)棱也相互平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一個正四棱臺形狀的油槽,可以裝油,假如它的兩底面邊長分別等于,求它的深度為多少?

查看答案和解析>>

同步練習(xí)冊答案