【題目】設(shè)α,β是兩個不同的平面,l,m是兩條不同的直線,且lα,mβ下面命題正確的是( )
A.若l∥β,則α∥β
B.若α⊥β,則l⊥m
C.若l⊥β,則α⊥β
D.若α∥β,則l∥m
【答案】C
【解析】解:對于A,若l∥β,則α∥β或α,β相交,不正確;
對于B,若α⊥β,則l、m位置關(guān)系不定,不正確;
對于C,根據(jù)平面與平面垂直的判定,可知正確;
對于D,α∥β,則l、m位置關(guān)系不定,不正確.
故選C.
【考點(diǎn)精析】本題主要考查了空間中直線與平面之間的位置關(guān)系和平面與平面之間的位置關(guān)系的相關(guān)知識點(diǎn),需要掌握直線在平面內(nèi)—有無數(shù)個公共點(diǎn);直線與平面相交—有且只有一個公共點(diǎn);直線在平面平行—沒有公共點(diǎn);兩個平面平行沒有交點(diǎn);兩個平面相交有一條公共直線才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把數(shù)列{2n+1}(n∈N*)依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù),…循環(huán),分別:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…,則第120個括號內(nèi)各數(shù)之和為( )
A.2312
B.2392
C.2472
D.2544
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知1<a<b,m=ab﹣1 , n=ba﹣1 , 則m,n的大小關(guān)系為( )
A.m<n
B.m=n
C.m>n
D.m,n的大小關(guān)系不確定,與a,b的取值有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上單調(diào)遞減的奇函數(shù),若x1+x2>0,x2+x3>0,x3+x1>0,則( )
A.f(x1)+f(x2)+f(x3)>0
B.f(x1)+f(x2)+f(x3)<0
C.f(x1)+f(x2)+f(x3)=0
D.f(x1)+f(x2)>f(x3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程為x2+y2﹣2x+4y﹣20=0,則其圓C和半徑r分別為( )
A.C(1,﹣2),r=5
B.C(﹣1,﹣2),r=5
C.C(1,2),r=25
D.C(1,﹣2),r=25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α,β是兩個平面,m,n是兩條直線,則下列四個結(jié)論中,正確的有(填寫所有正確結(jié)論的編號) ①若m∥α,n∥α,則m∥n;
②若m⊥α,n∥α,則m⊥n;
③若a∥β,mα,則m∥β;
④若m⊥n.m⊥α,n∥β,則α⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從5名男生和4名女生中選出4人去參加座談會,問:
(Ⅰ)如果4人中男生和女生各選2人,有多少種選法?
(Ⅱ)如果男生中的甲與女生中的乙至少要有1人在內(nèi),有多少種選法?
(Ⅲ)如果4人中必須既有男生又有女生,有多少種選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( )
A.y=2x
B.y=x﹣2
C.y=log2x
D.y=x2+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com