精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)如圖,在四棱錐中,四邊形為平行四邊形,,,上一點,且平面

   ⑴求證:;

⑵如果點為線段的中點,求證:∥平面

 

【答案】

見解析.

【解析】(1)本小題可以通過證明平面,來證明.

(2) 取中點,通過證明四邊形為平行四邊形,從而證明出,問題得解。

證明:⑴因為平面平面,所以.…2分

因為,且平面,

所以平面.……………………………………………………………………4分

因為平面,所以.………………………………………………6分

⑵取中點,連結

因為平面,平面,所以

因為,所以的中點.………………………………………………8分

所以為△的中位線.所以,且=.……………10分

因為四邊形為平行四邊形,所以,且

,且

因為中點,所以,且

所以四邊形為平行四邊形,所以.………………………………12分

因為平面,平面,所以∥平面.………………14分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內建一個矩形草坪,另外△AEF內部有一文物保護區(qū)域不能占用,經過測量AB=100m,BC=80m,AE=30m,AF=20m,應該如何設計才能使草坪面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分14分)

         如圖,已知直三棱柱ABC—A1B1C1,E是棱CC1上動點,F是AB中點,

   (1)求證:;

   (2)當E是棱CC1中點時,求證:CF//平面AEB1;

   (3)在棱CC1上是否存在點E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數學 題型:解答題

(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若FDE的中點,求證:BE//平面ACF;

(Ⅱ)求直線BE與平面ABCD所成角的正弦值

 

查看答案和解析>>

科目:高中數學 來源:2011年福建省高二上學期期末考試數學理卷 題型:解答題

(本題滿分14分)如圖,正方形的邊長都是1,平面平面,點上移動,點上移動,若

(I)求的長;

(II)為何值時,的長最;

(III)當的長最小時,求面與面所成銳二面角余弦值的大小.

 

查看答案和解析>>

科目:高中數學 來源:杭州市2010年第二次高考科目教學質量檢測 題型:解答題

(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點。

   (1)求證:EF//平面ABC;

   (2)求證:平面平面C1CBB1;

   (3)求異面直線AB與EB1所成的角。

 

查看答案和解析>>

同步練習冊答案