【題目】運(yùn)行如圖所示的程序框圖,則輸出結(jié)果為(
A.
B.
C.
D.

【答案】A
【解析】解:輸入a=1,b=2,m= , f(1)=﹣1<0,f(m)=f( >0,f(1)f(m)<0,
a=1,b= ,|1﹣ |= ,
m= ,f(1)=﹣1,f(m)=f( )<0,f(1)f(m)>0,
a= ,b= ,| |= ,m=
f(a)=f( )<0,f(m)=f( )<0,f(a)f(m)>0,
a= ,b= ,| |= <0.2,
退出循環(huán),輸出m= ,
故選:A.
執(zhí)行程序框圖,依次寫(xiě)出每次循環(huán)得到的a,b,m的值,當(dāng)m= 時(shí),滿足條件|a﹣b|<d,輸出m的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是

A. y與x具有正的線性相關(guān)關(guān)系

B. 回歸直線過(guò)樣本點(diǎn)的中心

C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg

D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:

Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)棱底面,且側(cè)棱的長(zhǎng)是,點(diǎn)分別是的中點(diǎn).

(Ⅰ)證明: 平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, 底面, , , 是棱上一點(diǎn).

I)求證:

II)若 分別是, 的中點(diǎn),求證: 平面

III)若二面角的大小為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷售量(單位:噸)的影響,對(duì)近六年的年宣傳費(fèi)和年銷售量()的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份(

2012

2013

2014

2015

2016

2017

年宣傳費(fèi)(萬(wàn)元)

23

25

27

29

32

35

年銷售量(噸)

11

21

24

66

115

325

(1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適合作為年銷售量(噸)與關(guān)于宣傳費(fèi)(萬(wàn)元)的回歸方程類型;

(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(fèi)(萬(wàn)元)的比值大于1時(shí),認(rèn)為該年效益良好,現(xiàn)從這6年中任選3年,記其中選到效益良好的數(shù)量為,試求的所有取值情況及對(duì)應(yīng)的概率;

(3)根據(jù)頻率分布直方圖中求出樣本數(shù)據(jù)平均數(shù)的思想方法,求的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且的面積為

1)求橢圓的方程;

2)設(shè)橢圓的左、右頂點(diǎn)分別為、,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于、兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx+sin2x+ (x∈R).
(Ⅰ)當(dāng)x∈[﹣ , ]時(shí),求f(x)的最大值.
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且c= ,f(C)=2,sinB=2sinA,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,.

1求數(shù)列的通項(xiàng)公式;

2設(shè),,記數(shù)列的前項(xiàng)和.若對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案