【題目】已知函數(shù)fx=sinπωxcosωx+cos2ωxω0)的最小正周期為π

)求ω的值;

)將函數(shù)y=fx)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到函數(shù)y=gx)的圖象,求函數(shù)y=gx)在區(qū)間上的最小值.

【答案】1(1

【解析】

試題分析:)將函數(shù)式整理變形為的形式,由函數(shù)周期可求得的值)由()中求得的函數(shù)式按照平移規(guī)律得到函數(shù),由定義域求得的取值范圍,結(jié)合函數(shù)單調(diào)性可求得函數(shù)的最小值

試題解析:fx=sinπωxcosωx+cos2ωx

fx=sinωxcosωx+

=sin2ωx+cos2ωx+

=sin2ωx++

由于ω0,依題意得,

所以ω=1;

)由()知fx=sin2x++

gx=f2x=sin4x++

0x時,4x+

sin4x+1,

1gx,

gx)在此區(qū)間內(nèi)的最小值為1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面,為直角,,,分別為的中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)若,求二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(1)的極值;

(2)設(shè),記上的最大值為,求函數(shù)的最小值;

(3)設(shè)函數(shù)為常數(shù)),若使上恒成立的實(shí)數(shù)有且只有一個,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國乒乓球隊(duì)備戰(zhàn)里約奧運(yùn)會熱身賽選拔賽于2016年7月14日在山東威海開賽.種子選手,,三位非種子選手分別進(jìn)行一場對抗賽,按以往多次比賽的統(tǒng)計,獲勝的概率分別為,,且各場比賽互不影響.

(1)若至少獲勝兩場的概率大于,入選征戰(zhàn)里約奧運(yùn)會的最終大名單,否則不予入選,問是否會入選最終的大名單?

(2)求獲勝場數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 用反證法證明命題:“三角形三個內(nèi)角至少有一個不大于60°”時,應(yīng)假設(shè)( )

A.三個內(nèi)角都不大于60° B.三個內(nèi)角都大于60°

C.三個內(nèi)角至多有一個大于60° D.三個內(nèi)角至多有兩個大于60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),且焦點(diǎn)為,直線與拋物線相交于兩點(diǎn).

(1)求拋物線的方程,并求其準(zhǔn)線方程;

(2)若直線經(jīng)過拋物線的焦點(diǎn),當(dāng)線段的長等于5時,求直線方程.

(3)若,證明直線必過一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是矩形,,的中點(diǎn).

1求證:平面

2已知點(diǎn)的中點(diǎn),點(diǎn)上一點(diǎn),且平面平面.若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三維柱形圖中柱的高度表示的是( )

A. 各分類變量的頻數(shù) B. 分類變量的百分比

C. 分類變量的樣本數(shù) D. 分類變量的具體值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若4名學(xué)生報名參加數(shù)學(xué)、計算機(jī)、航模興趣小組,每人選報1項(xiàng),則不同的報名方式有__________

查看答案和解析>>

同步練習(xí)冊答案