【題目】設(shè)和是兩個等差數(shù)列,記 ,
其中表示這個數(shù)中最大的數(shù).
(Ⅰ)若, ,求的值,并證明是等差數(shù)列;
(Ⅱ)證明:或者對任意正數(shù),存在正整數(shù),當時, ;或者存在正整數(shù),使得是等差數(shù)列.
【答案】(1)見解析(2)見解析
【解析】試題分析:(Ⅰ)分別代入求,觀察規(guī)律,再證明當時, ,所以關(guān)于單調(diào)遞減. 所以,從而得證;(Ⅱ)首先求的通項公式,分三種情況討論證明.
試題解析:(Ⅰ)
,
.
當時, ,
所以關(guān)于單調(diào)遞減.
所以.
所以對任意,于是,
所以是等差數(shù)列.
(Ⅱ)設(shè)數(shù)列和的公差分別為,則
.
所以
①當時,取正整數(shù),則當時, ,因此.
此時, 是等差數(shù)列.
②當時,對任意,
此時, 是等差數(shù)列.
③當時,
當時,有.
所以
對任意正數(shù),取正整數(shù),
故當時, .
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(UT)=( )
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為1的正方體ABCD﹣A1B1C1D1中,E、F分別為棱AA1、BB1的中點,G為棱A1B1上的一點,且A1G=λ(0≤λ≤1),則點G到平面D1EF的距離為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C: (a>b>0)的離心率為,橢圓C截直線y=1所得線段的長度為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)動直線l:y=kx+m(m≠0)交橢圓C于A,B兩點,交y軸于點M.點N是M關(guān)于O的對稱點,⊙N的半徑為|NO|. 設(shè)D為AB的中點,DE,DF與⊙N分別相切于點E,F,求EDF的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大。
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=3,an+1=can+m(c,m為常數(shù))
(1)當c=1,m=1時,求數(shù)列{an}的通項公式an;
(2)當c=2,m=﹣1時,證明:數(shù)列{an﹣1}為等比數(shù)列;
(3)在(2)的條件下,記bn= ,Sn=b1+b2+…+bn , 證明:Sn<1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某種信息傳輸過程中,用4個數(shù)字的一個排列(數(shù)字允許重復(fù))表示一個信息,不同排列表示不同信息.若所用數(shù)字只有0和1,則與信息0110至多有兩個對應(yīng)位置上的數(shù)字相同的信息個數(shù)為 ( )
A.10
B.11
C.12
D.15
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直棱柱ABC﹣A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB= AB. (Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D﹣A1C﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).以原點為極點, 軸的正半軸為極軸建立極坐標系,點的極坐標方程為.
(1)求點的直角坐標,并求曲線的普通方程;
(2)設(shè)直線與曲線的兩個交點為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com