【題目】如圖,直線 平面 ,垂足為 ,正四面體(所有棱長都相等的三棱錐) 的棱長為2, 在平面 內(nèi), 是直線 上的動點,當(dāng) 到 的距離為最大時,正四面體在平面 上的射影面積為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}是公差為d(d≠0)的等差數(shù)列,Sn為其前n項和,a1 , a2 , a5成等比數(shù)列.
(Ⅰ)證明S1 , S3 , S9成等比數(shù)列;
(Ⅱ)設(shè)a1=1,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為矩形的四棱椎P﹣ABCD中,PB⊥AB.
(1)證明:平面PBC⊥平面PCD;
(2)若異面直線PC與BD所成角為60°,PB=AB,PB⊥BC,求二面角B﹣PD﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同時滿足條件:
①x∈R,f(x)<0或g(x)<0;
②x∈(-∞,-4),f(x)g(x)<0,則m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 : ( )與直線 : 相切,設(shè)點 為圓上一動點, 軸于 ,且動點 滿足 ,設(shè)動點 的軌跡為曲線 .
(1)求曲線 的方程;
(2)直線 與直線 垂直且與曲線 交于 , 兩點,求 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B是兩個非空集合,定義運算A×B={x|x∈A∪B且xA∩B}.已知A={x|y= },B={y|y=2x , x>0},則A×B=( )
A.[0,1]∪(2,+∞)
B.[0,1)∪[2,+∞)
C.[0,1]
D.[0,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養(yǎng)殖密度x(單位:尾/立方米)的函數(shù).當(dāng)x不超過4尾/立方米時,v的值為2千克/年;當(dāng)4<x≤20時,v是x的一次函數(shù),當(dāng)x達到20尾/立方米時,因缺氧等原因,v的值為0千克/年.
(1)當(dāng)0<x≤20時,求函數(shù)v關(guān)于x的函數(shù)表達式;
(2)當(dāng)養(yǎng)殖密度x為多大時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ln(x2﹣2x﹣8)的單調(diào)遞增區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com