【題目】如圖,在底面為矩形的四棱椎P﹣ABCD中,PB⊥AB.
(1)證明:平面PBC⊥平面PCD;
(2)若異面直線PC與BD所成角為60°,PB=AB,PB⊥BC,求二面角B﹣PD﹣C的大。
【答案】
(1)解:證明:∵四棱椎P﹣ABCD的底面為矩形,∴AB⊥BC.
∵PB⊥AB,PB∩BC=B,∴AB⊥平面PBC
∵CD∥AB,∴CD⊥平面PCD;
(2)解:以B為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
設(shè)PA=AB=1,BC=a,則B(0,0,0),C(0,0,a),P(1,0,0),D(0,1,a)
∴ , ,
∵異面直線PC與BD所成角為60°∴ =cos60°.
∴ ,解得a=1,或a=﹣1(舍)
設(shè)平面PBD的法向量為 ,由 ,可取
設(shè)平面PCD的法向量為 ,由 可取
∴ =﹣
∵二面角B﹣PD﹣C為銳角.∴二面角B﹣PD﹣C的大小為 .
【解析】(1)由ABCD為矩形得到AB⊥BC,結(jié)合PB⊥AB,可得到線AB⊥面PBC,再由平行不難得出證明結(jié)果,(2)以B為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,根據(jù)法向量得到二面角B﹣PD﹣C的大小.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用平面與平面垂直的判定,掌握一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣alnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)f(x)在區(qū)間(1,e2]內(nèi)恰有兩個(gè)零點(diǎn),試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車(chē)應(yīng)運(yùn)而生.某市場(chǎng)研究人員為了了解共享單車(chē)運(yùn)營(yíng)公司M的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系.求y關(guān)于x的線性回歸方程,并預(yù)測(cè)M公司2017年4月份的市場(chǎng)占有率;
(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車(chē).現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的A、B兩款車(chē)型可供選擇,按規(guī)定每輛單車(chē)最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車(chē)輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車(chē)型的單車(chē)各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車(chē)使用壽命頻數(shù)表如下:
報(bào)廢年限 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
經(jīng)測(cè)算,平均每輛單車(chē)每年可以帶來(lái)收入500元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車(chē)的使用壽命都是整數(shù)年,且以頻率作為每輛單車(chē)使用壽命的概率.如果你是M公司的負(fù)責(zé)人,以每輛單車(chē)產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車(chē)型?
參考數(shù)據(jù):, , =17.5.
參考公式:
回歸直線方程為 其中 = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】美索不達(dá)米亞平原是人類(lèi)文明的發(fā)祥地之一.美索不達(dá)米亞人善于計(jì)算,他們創(chuàng)造了優(yōu)良的計(jì)數(shù)系統(tǒng),其中開(kāi)平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運(yùn)算都精確到小數(shù)點(diǎn)后兩位)則輸出結(jié)果為( )
A.2.81
B.2.82
C.2.83
D.2.84
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=aln(x+1),g(x)=ex﹣1,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)x≥0時(shí),f(x)≤g(x)恒成立,求a的取值范圍;
(Ⅱ)求證: < < (參考數(shù)據(jù):ln1.1≈0.095).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:今有芻童,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高一丈,問(wèn):積幾何?其意思是說(shuō):“今有底面為矩形的屋脊?fàn)钚w,下底面寬3丈,長(zhǎng)4丈;上棱長(zhǎng)2丈,高一丈.問(wèn)它的體積是多少?”已知一丈為10尺,現(xiàn)將該楔體的三視圖給出如右圖所示,其中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,則該楔體的體積為( 。
A.5000立方尺
B.5500立方尺
C.6000立方尺
D.6500立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a>1,函數(shù)f(x)=(1+x2)ex﹣a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明f(x)在(﹣∞,+∞)上僅有一個(gè)零點(diǎn);
(3)若曲線y=f(x)在點(diǎn)P處的切線與x軸平行,且在點(diǎn)M(m,n)處的切線與直線OP平行,(O是坐標(biāo)原點(diǎn)),證明:m≤ ﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線 平面 ,垂足為 ,正四面體(所有棱長(zhǎng)都相等的三棱錐) 的棱長(zhǎng)為2, 在平面 內(nèi), 是直線 上的動(dòng)點(diǎn),當(dāng) 到 的距離為最大時(shí),正四面體在平面 上的射影面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】候鳥(niǎo)每年都要隨季節(jié)的變化而進(jìn)行大規(guī)模地遷徙,研究某種鳥(niǎo)類(lèi)的專(zhuān)家發(fā)現(xiàn),該種鳥(niǎo)類(lèi)的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為:v=a+blog3 (其中a,b是實(shí)數(shù)).據(jù)統(tǒng)計(jì),該種鳥(niǎo)類(lèi)在靜止的時(shí)候其耗氧量為30個(gè)單位,而其耗氧量為90個(gè)單位時(shí),其飛行速度為1 m/s.
(1)求出a,b的值;
(2)若這種鳥(niǎo)類(lèi)為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個(gè)單位?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com