已知橢圓,直線:y=x+m
(1)若與橢圓有一個(gè)公共點(diǎn),求的值;
(2)若與橢圓相交于P,Q兩點(diǎn),且|PQ|等于橢圓的短軸長(zhǎng),求m的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知雙曲線C與橢圓有相同的焦點(diǎn),實(shí)半軸長(zhǎng)為.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若直線與雙曲線有兩個(gè)不同的交點(diǎn)和,且
(其中為原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
若直線過點(diǎn)(0,3)且與拋物線y2=2x只有一個(gè)公共點(diǎn),求該直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分10分)
求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:
(1)過點(diǎn)(-3,2);
(2)焦點(diǎn)在直線x-2y-4=0上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
給定拋物線,是拋物線的焦點(diǎn),過點(diǎn)的直線與相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)設(shè)的斜率為1,求以為直徑的圓的方程;
(Ⅱ)設(shè),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖橢圓的上頂點(diǎn)為A,左頂點(diǎn)為B, F為右焦點(diǎn), 過F作平行與AB的直線交橢圓于C、D兩點(diǎn). 作平行四邊形OCED, E恰在橢圓上。
(1)求橢圓的離心率;
(2)若平行四邊形OCED的面積為, 求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,橢圓C以過點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)?
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)如圖所示,直線l與拋物線y2=x交于A(x1,y1),B(x2,y2)兩點(diǎn),與x軸交于點(diǎn)M,且y1y2=-1,
(Ⅰ)求證:點(diǎn)的坐標(biāo)為;
(Ⅱ)求證:OA⊥OB;
(Ⅲ)求△AOB面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)已知直線經(jīng)過橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn)。
(I)求橢圓的方程;
(Ⅱ)求線段的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段的長(zhǎng)度最小時(shí),在橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com