【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
(1)證明:AD⊥PB.
(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。
【答案】(1)證明見解析;(2)1
【解析】
(1)取AD的中點(diǎn)O, 連接P0,BO,BD,利用三線合一得出BO⊥AD,PO⊥AD,故AD⊥平面PBO,,于是AD⊥PB。(2)利用勾股定理得出PO⊥BO,可得PO⊥平面ABCD,用棱錐的體積公式計(jì)算即可
(1)證明:取AD的中點(diǎn)O,連接P0,BO,BD,
∵底面ABCD是等邊三角形
∴BO⊥AD,
又∵PA=PD,即ΔPAD等腰三角形,
∴PO⊥AD,
又∵POBO=0.
∴AD⊥平面PBO,
又∵PB平面PBO.
∴AD⊥PB;
(2)解:AB=PA=2
∴由(1)知ΔPAD是邊長(zhǎng)為2的正三角形,則PO=.
又∵PB=,
∴PO2+BO2=PB2,即PO⊥BO,
又由(1)知,PO⊥AD.且BOAD=O.
∴PO⊥平面ABCD.
∴
∴三棱錐P-BCD的體積為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:3x﹣y﹣1=0,l2:x+2y﹣5=0,l3:x﹣ay﹣3=0不能圍成三角形,則實(shí)數(shù)a的取值可能為( )
A.1B.C.﹣2D.﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),則以下結(jié)論正確的是( )
A.函數(shù)的單調(diào)減區(qū)間是
B.函數(shù)有且只有1個(gè)零點(diǎn)
C.存在正實(shí)數(shù),使得成立
D.對(duì)任意兩個(gè)正實(shí)數(shù),,且,若則
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知直線l過(guò)點(diǎn)P(2,2).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣ρcos2θ﹣4cosθ=0.
(1)求C的直角坐標(biāo)方程;
(2)若l與C交于A,B兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)圖象上不同兩點(diǎn),處的切線的斜率分別是,,規(guī)定(為線段的長(zhǎng)度)叫做曲線在點(diǎn)與點(diǎn)之間的“彎曲度”,給出以下命題:
①函數(shù)圖象上兩點(diǎn)與的橫坐標(biāo)分別為和,則;
②存在這樣的函數(shù),其圖象上任意不同兩點(diǎn)之間的“彎曲度”為常數(shù);
③設(shè),是拋物線上不同的兩點(diǎn),則 ;
④設(shè), 是曲線(是自然對(duì)數(shù)的底數(shù))上不同的兩點(diǎn),則.
其中真命題的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)設(shè),若曲線,有公共點(diǎn),且在點(diǎn)處的切線相同,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為的樣本,得到一周參加社區(qū)服務(wù)的時(shí)間的統(tǒng)計(jì)數(shù)據(jù)好下表:
超過(guò)1小時(shí) | 不超過(guò)1小時(shí) | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,;
(Ⅱ)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過(guò)1小時(shí)與性別有關(guān)?
(Ⅲ)以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)調(diào)查6名學(xué)生,試估計(jì)6名學(xué)生中一周參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中錯(cuò)誤的是
A. 若命題為真命題, 命題為假命題, 則命題“”為真命題
B. 命題“若,則或”為真命題
C. 對(duì)于命題,,則,
D. “”是“”的充分不必要條件個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(
已知函數(shù),()
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com