(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側棱BB1的長為4,過點B作B1C的垂線交側棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。
⑴由三垂線定理可得,A1C⊥BD,A1C⊥BEA1C⊥平面BDE

試題分析:⑴由三垂線定理可得,A1C⊥BD,A1C⊥BEA1C⊥平面BDE
⑵以DA、DC、DD1分別為x、y、z軸,建立坐標系,則,
,∴,
設A1C平面BDE=K,由⑴可知,∠A1BK為A1B與平面BDE所成角,

點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。本題解法利用了向量,簡化了證明過程。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分為12分)
在四棱錐中,底面,,,,的中點.

(I)證明:;
(II)證明:平面;
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在直三棱柱中, AC=4,CB=2,AA1=2,
,E、F分別是的中點。

(1)證明:平面平面
(2)證明:平面ABE;
(3)設P是BE的中點,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知球面上有四點P,A,B,C,滿足PA,PB,PC兩兩垂直,PA=3,PB=4,PC=5,則該球的表面積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖所示,已知六棱錐的底面是正六邊形,平面的中點。

(Ⅰ)求證:平面//平面
(Ⅱ)設,當二面角的大小為時,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖:正方體中,所成的角為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將正方形沿對角線折成直二面角,有如下四個結論:
;     ②△是等邊三角形;
與平面所成的角為60°; ④所成的角為60°.
其中錯誤的結論是(   )
A.①B.②C.③D.④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,,,,,的中點.

求證:(1)∥平面
(2)⊥平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;
(2)求PC與平面PAB所成角的余弦值。

查看答案和解析>>

同步練習冊答案