精英家教網 > 高中數學 > 題目詳情
已知球面上有四點P,A,B,C,滿足PA,PB,PC兩兩垂直,PA=3,PB=4,PC=5,則該球的表面積是(   )
A.B.C.D.
C

試題分析:由PA,PB,PC兩兩垂直知,以PA,PB,PC為棱的長方體的外接球就是題目中的球,根據長方體的性質可知,∴該球的表面積是,故選C
點評:掌握常見幾何體的外接球的半徑公式及球的體積、表面積公式是解決此類問題的關鍵
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱錐中,底面,,,點,分別在棱上,且
(Ⅰ)求證:平面
(Ⅱ)當的中點時,求與平面所成的角的大;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題12分)
如圖,在中,邊上的高,,沿翻折,使得得幾何體

(Ⅰ)求證:;
(Ⅱ)求點D到面ABC的距離。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,邊長為a的正方體ABCD-A1B1C1D1中,E為CC1的中點.

(1)求直線A1E與平面BDD1B1所成的角的正弦值
(2)求點E到平面A1DB的距離

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知表示兩個互相垂直的平面,表示一對異面直線,則的一個充分條件是(  )
A.     B.
C.      D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

一個多面體的直觀圖和三視圖如圖所示,其中、分別是、的中點,上的一動點,主視圖與俯視圖都為正方形。

⑴求證:;
⑵當時,在棱上確定一點,使得∥平面,并給出證明。
⑶求二面角的平面角余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知兩個不同的平面和兩條不重合的直線,有下列四個命題:
①若//,,則;         ②若,,則//;
③若,,則;       ④若//,//,則//.
其中正確命題的個數是
A.1個B.2個
C.3個D.4個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側棱BB1的長為4,過點B作B1C的垂線交側棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

為使互不重合的平面,是互不重合的直線,給出下列四個命題:
         
 
 
④若
其中正確命題的序號為         

查看答案和解析>>

同步練習冊答案