【題目】已知直線l的方程為y=x+2,點P是拋物線y2=4x上到直線l距離最小的點,點A是拋物線上異于點P的點,直線AP與直線l交于點Q,過點Q與x軸平行的直線與拋物線y2=4x交于點B.
(Ⅰ)求點P的坐標(biāo);
(Ⅱ)證明直線AB恒過定點,并求這個定點的坐標(biāo).
【答案】解:(Ⅰ)設(shè)點P的坐標(biāo)為(x0 , y0),則 ,
所以,點P到直線l的距離 .
當(dāng)且僅當(dāng)y0=2時等號成立,此時P點坐標(biāo)為(1,2).
(Ⅱ)設(shè)點A的坐標(biāo)為 ,顯然y1≠2.
當(dāng)y1=﹣2時,A點坐標(biāo)為(1,﹣2),直線AP的方程為x=1;
當(dāng)y1≠﹣2時,直線AP的方程為 ,
化簡得4x﹣(y1+2)y+2y1=0;
綜上,直線AP的方程為4x﹣(y1+2)y+2y1=0.
與直線l的方程y=x+2聯(lián)立,可得點Q的縱坐標(biāo)為 .
因為,BQ∥x軸,所以B點的縱坐標(biāo)為 .
因此,B點的坐標(biāo)為 .
當(dāng) ,即 時,直線AB的斜率 .
所以直線AB的方程為 ,
整理得 .
當(dāng)x=2,y=2時,上式對任意y1恒成立,
此時,直線AB恒過定點(2,2),
當(dāng) 時,直線AB的方程為x=2,仍過定點(2,2),
故符合題意的直線AB恒過定點(2,2)
【解析】(Ⅰ)利用點到直線的距離公式,求出最小值,然后求點P的坐標(biāo);(Ⅱ)設(shè)點A的坐標(biāo)為 ,顯然y1≠2.通過當(dāng)y1=﹣2時,求出直線AP的方程為x=1;當(dāng)y1≠﹣2時,求出直線AP的方程,然后求出Q的坐標(biāo),求出B點的坐標(biāo),解出直線AB的斜率,推出AB的方程,判斷直線AB恒過定點推出結(jié)果.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的偶函數(shù)f(x),其導(dǎo)函數(shù)為f'(x),對任意x∈[0,+∞),均滿足:xf'(x)>﹣2f(x).若g(x)=x2f(x),則不等式g(2x)<g(1﹣x)的解集是( )
A.(﹣∞,﹣1)
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=f'(1)ex﹣1﹣f(0)x+ 的導(dǎo)數(shù),e為自然對數(shù)的底數(shù))g(x)= +ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及極值;
(Ⅱ)若f(x)≥g(x),求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(1,0), =(1,1),(x,y)= ,若0≤λ≤1≤μ≤2時,z= (m>0,n>0)的最大值為2,則m+n的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形OABC邊長為3,點M,N分別為線段BC,AB上一點,且2BM=MC,AN=NB,P為△BNM內(nèi)一點(含邊界),設(shè) (λ,μ為實數(shù)),則 的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|2x﹣1|+|5x﹣1|
(1)求f(x)>x+1的解集;
(2)若m=2﹣n,對m,n∈(0,+∞),恒有 成立,求實數(shù)x的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1 , 拋物線C2焦點均在x軸上,C1的中心和C2頂點均為原點O,從每條曲線上各取兩個點,將其坐標(biāo)記錄于表中,則C1的左焦點到C2的準(zhǔn)線之間的距離為( )
x | 3 | ﹣2 | 4 | |
y | -2 | 0 | ﹣4 |
A. -1
B. -1
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·新課標(biāo)1卷)執(zhí)行右面的程序框圖,如果輸入的t=0.01,則輸出的n=( )
A.5
B.6
C.10
D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com