【題目】已知, 的導函數(shù).

(1)求的極值;

(2)證明:對任意實數(shù),都有恒成立;

(3)若時恒成立,求實數(shù)的取值范圍.

【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)

【解析】試題分析:(Ⅰ)由題意得處,進而,分兩種情況討論,即可求解;

(Ⅱ)由,則要證 ,只需證.

,利用導數(shù)得出函數(shù)的性質,即可作出證明.

(Ⅲ)由(Ⅱ)知恒成立,可得,分兩種情況討論,即可求解實數(shù)的值.

試題解析:

, , ,

時, 恒成立, 無極值;

時, ,即,

,得;由,得,

所以當時,有極小值.

(Ⅱ)因為,所以,要證 ,只需證.

,則,且,得; ,得,

上單調(diào)遞減,在上單調(diào)遞增,

,即恒成立,

∴對任意實數(shù),都有 恒成立.

(Ⅲ)令,則,注意到

由(Ⅱ)知恒成立,故,

①當時, ,

于是當時, ,即成立.

②當時,由)可得).

,

故當時, ,

于是當時, , 不成立.

綜上, 的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).

(1)設曲線處的切線為,若與點的距離為,求的值;

(2)若對于任意實數(shù), 恒成立,試確定的取值范圍;

(3)當時,函數(shù)上是否存在極值?若存在,請求出極值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校計劃面向高一年級1240名學生開設校本選修課程,為確保工作的順利實施,按性別進行分層抽樣,現(xiàn)抽取124名學生對社會科學類、自然科學類這兩大類校本選修課程進行選課意向調(diào)查,其中男生有65人.在這124名學生中選修社會科學類的男生有22人、女生有40人.

(1)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表;

(2)判斷能否有99.9%的把握認為科類的選修與性別有關?

附: ,其中

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線的極坐標方程為,直線的參數(shù)方程為

為參數(shù), 為直線的傾斜角).

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線有唯一的公共點,求角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著智能手機的發(fā)展,微信越來越成為人們交流的一種方式,某機構對使用微信交流的態(tài)度進行調(diào)查,隨機調(diào)查了50人,他們年齡的頻數(shù)分布及對使用微信交流贊成人數(shù)如表:

年齡(歲)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有99%的把握認為年齡45歲為分界點對使用微信交流的態(tài)度有差異;

年齡不低于45歲的人

年齡低于45歲的人

合計

贊成

不贊成

合計

(2)若對年齡分別在, 的被調(diào)查人中各抽取一人進行追蹤調(diào)查,求選中的2人中至少有一人贊成使用微信交流的概率.

參考公式: ,其中

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:①定義在上的函數(shù)滿足,則一定不是上的減函數(shù);

②用反證法證明命題“若實數(shù),滿足,則都為0”時,“假設命題的結論不成立”的敘述是“假設都不為0”;

③把函數(shù)的圖象向右平移個單位長度,所得到的圖象的函數(shù)解析式為

④“”是“函數(shù)為奇函數(shù)”的充分不必要條件.

其中所有正確命題的序號為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對400名高一學生的一周課外體育鍛煉時間進行調(diào)查,結果如下表所示:現(xiàn)采用分層抽樣的方法抽取容量為20的樣本.

(1)其中課外體育鍛煉時間在分鐘內(nèi)的學生應抽取多少人?

(2)若從(1)中被抽取的學生中隨機抽取2名,求這2名學生課外體育鍛煉時間均在分鐘內(nèi)的概率.

鍛煉時間(分鐘)

人數(shù)

40

60

80

100

80

40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm,容器Ⅱ的兩底面對角線,的長分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水水深均為12cm現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)

1)將放在容器Ⅰ中,的一端置于點A處,另一端置于側棱上,沒入水中部分的長度;

(2)將放在容器Ⅱ中,的一端置于點E處,另一端置于側棱上,求沒入水中部分的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“開門大吉”是某電視臺推出的游戲節(jié)目,選手面對1號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應的家庭夢想基金,在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段: (單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.

(Ⅰ)寫出列聯(lián)表;判斷是否有的把握認為猜對歌曲名稱是否與年齡有關;說明你的理由;(如表的臨界值表供參考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

(Ⅱ)現(xiàn)計劃在這次場外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運選手,求3名幸運選手中恰好有一人在歲之間的概率. 

(參考公式: ,其中

查看答案和解析>>

同步練習冊答案