【題目】如圖:某快遞小哥從地出發(fā),沿小路以平均時速20公里小時,送快件到處,已知(公里),,是等腰三角形,

(1) 試問,快遞小哥能否在50分鐘內(nèi)將快件送到處?

(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車平均時速60公里小時,問,汽車能否先到達處?

【答案】(1)不能(2)

【解析】試題分析:(1)由題意結(jié)合圖形,根據(jù)正弦定理可得,,求得的長,又,可求出快遞小哥從地到地的路程,再計算小哥到達地的時間,從而問題可得解;

(2)由題意,可根據(jù)余弦定理分別算出的長,計算汽車行馳的路程,從而求出汽車到達地所用的時間,計算其與步小哥所用時間相差是否有15分鐘,從而問題可得解.

試題解析:(1)(公里),

中,由,得(公里)

于是,由知,

快遞小哥不能在50分鐘內(nèi)將快件送到處.

(2)在中,由,

(公里),

中,,由,

(公里),-

(分鐘)

知,汽車能先到達處.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)求函數(shù)的極值;

(2),對于任意,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是,(為參數(shù)).

(1)求直線的直角坐標方程和曲線的普通方程;

(2)設直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為的函數(shù),若存在區(qū)間,同時滿足下列條件:①上是單調(diào)的;②當定義域是時,的值域也是,則稱為該函數(shù)的“和諧區(qū)間”.下列函數(shù)存在“和諧區(qū)間”的是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當時,記,是否存在整數(shù),使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A{x|(x3)(xa)<0,a∈R},集合B{xZ|x23x4<0}

(1)AB的子集個數(shù)為4,求a的范圍;

(2)aZ,當AB時,求a的最小值,并求當a取最小值時AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,且對任意的. ,.

(1)求并證明的奇偶性;

(2)判斷的單調(diào)性并證明;

(3);若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為 (為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求圓和圓的極坐標方程;

(2)過點的直線與圓異于點的交點分別為點,與圓異于點的交點分別為點,且,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天津大學某學院欲安排4名畢業(yè)生到某外資企業(yè)的三個部門實習,要求每個部門至少安排1人,其中甲大學生不能安排到部門工作的方法有_______種(用數(shù)字作答).

查看答案和解析>>

同步練習冊答案