【題目】對于函數(shù),若存在實(shí)數(shù),使成立,則稱為的不動點(diǎn).
(1)當(dāng),時,求的不動點(diǎn);
(2)若對于任何實(shí)數(shù),函數(shù)恒有兩相異的不動點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若的圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且直線是線段的垂直平分線,求實(shí)數(shù)的最小值.
【答案】(1)不動點(diǎn)是-1,2.(2)(3)
【解析】
(1)根據(jù)不動點(diǎn)定義,代入,,即可得一元二次方程,解方程即可求解.
(2)令,可得一元二次方程.根據(jù)有兩個相異的實(shí)數(shù)根,可知對應(yīng)判別式.即可得關(guān)于的不等式.再由對于任意實(shí)數(shù)恒成立,可知對應(yīng)判別式即可求得的取值范圍;
(3)根據(jù)題意可設(shè),,即可求得直線的斜率.根據(jù)直線是線段的垂直平分線,可求得的值.設(shè)的中點(diǎn)為,由韋達(dá)定理可得,代入直線即可用表示出.結(jié)合基本不等式即可求得的取值范圍,即可得的最小值.
∵
(1)當(dāng),時,
設(shè)為其不動點(diǎn),即.
則.
∴,.
即的不動點(diǎn)是-1,2.
(2)由得.由已知,此方程有相異二實(shí)根,
恒成立,即.
即對任意恒成立.
∴,
∴,
∴.
(3)因?yàn)?/span>的圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),設(shè),,
則
直線是線段的垂直平分線,
∴
記的中點(diǎn).由(2)知,
∵在上,
∴.
化簡得
(當(dāng)且僅當(dāng)時,等號成立).
即.
因?yàn)?/span>,所以
綜上可知
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形中,,,為邊的中點(diǎn),將 沿直線翻折成.若為線段的中點(diǎn),則在翻折過程中,有下列三個命題:
①線段的長是定值;
②存在某個位置,使;
③存在某個位置,使平面.
其中正確的命題有______. (填寫所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面ABCD,是正三角形,AC與BD的交點(diǎn)為M,又,,點(diǎn)N是CD中點(diǎn).
(1)求證:平面PAD;
(2)求點(diǎn)M到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某小區(qū)2017年1月至2018年1月當(dāng)月在售二手房均價(單位:萬元/平方米)的散點(diǎn)圖.(圖中月份代碼1—13分別對應(yīng)2017年1月—2018年1月)
由散點(diǎn)圖選擇和兩個模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程分別為和,并得到以下一些統(tǒng)計(jì)量的值:
殘差平方和 | 0.000591 | 0.000164 |
總偏差平方和 | 0.006050 |
(1)請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好;
(2)某位購房者擬于2018年6月份購買這個小區(qū)平方米的二手房(欲
購房為其家庭首套房).若購房時該小區(qū)所有住房的房產(chǎn)證均已滿2年但未滿5年,請你利用(1)中擬合效果更好的模型估算該購房者應(yīng)支付的購房金額.(購房金額=房款+稅費(fèi);房屋均價精確到0.001萬元/平方米)
附注:根據(jù)有關(guān)規(guī)定,二手房交易需要繳納若干項(xiàng)稅費(fèi),稅費(fèi)是按房屋的計(jì)稅價格進(jìn)行征收.(計(jì)稅價格=房款),征收方式見下表:
契稅 (買方繳納) | 首套面積90平方米以內(nèi)(含90平方米)為1%;首套面積90平方米以上且144平方米以內(nèi)(含144平方米)為1.5%;面積144平方米以上或非首套為3% |
增值稅 (賣方繳納) | 房產(chǎn)證未滿2年或滿2年且面積在144平方米以上(不含144平方米)為5.6%;其他情況免征 |
個人所得稅 (賣方繳納) | 首套面積144平方米以內(nèi)(含144平方米)為1%;面積144平方米以上或非首套均為1.5%;房產(chǎn)證滿5年且是家庭唯一住房的免征 |
參考數(shù)據(jù):,,,,,,,. 參考公式:相關(guān)指數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的極值點(diǎn)的個數(shù);
(2)當(dāng)時,若存在實(shí)數(shù),使得,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若存在極大值,證明:;
(2)若關(guān)于的不等式在區(qū)間上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知定點(diǎn),點(diǎn)在軸上運(yùn)動,點(diǎn)在軸上運(yùn)動,點(diǎn)為坐標(biāo)平面內(nèi)的動點(diǎn),且滿足,.
(1)求動點(diǎn)的軌跡的方程;
(2)過曲線第一象限上一點(diǎn)(其中)作切線交直線于點(diǎn),連結(jié)并延長交直線于點(diǎn),求當(dāng)面積取最小值時切點(diǎn)的橫坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com