設數(shù)列{an}的前n項和為Sn.已知a1=1,=an+1-n2-n-,n∈N*.
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有.
(1)a2=4.(2)an=n2,n∈N*(3)見解析
【解析】(1)【解析】
∵=an+1-n2-n-,n∈N?.
∴當n=1時,2a1=2S1=a2--1-=a2-2.
又a1=1,∴a2=4.
(2)【解析】
∵=an+1-n2-n-,n∈N?.
∴2Sn=nan+1-n3-n2-n=nan+1-,①
∴當n≥2時,2Sn-1=(n-1)an-,②
由①-②,得2Sn-2Sn-1=nan+1-(n-1)an-n(n+1),
∵2an=2Sn-2Sn-1,∴2an=nan+1-(n-1)an-n(n+1),∴=1,
∴數(shù)列是以首項為=1,公差為1的等差數(shù)列.
∴=1+1×(n-1)=n,∴an=n2(n≥2),
當n=1時,上式顯然成立. ∴an=n2,n∈N*.
(3)證明:由(2)知,an=n2,n∈N*,
①當n=1時,=1<,∴原不等式成立.
②當n=2時,=1+<,∴原不等式成立.
③當n≥3時,∵n2>(n-1)·(n+1),
∴, ∴=
<1+
=1+
=1+
=1+=,
∴當n≥3時,∴原不等式亦成立.
綜上,對一切正整數(shù)n,有.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第4課時練習卷(解析版) 題型:解答題
如圖,在三棱錐SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E、G分別是棱SA、
SC的中點.求證:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第2課時練習卷(解析版) 題型:填空題
在梯形ABCD中,AB∥CD,AB平面α,CD平面α,則直線CD與平面α內的直線的位置關系可能是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第1課時練習卷(解析版) 題型:填空題
已知點P、Q,平面α,將命題“P∈α,QαPQα”改成文字敘述是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第6課時練習卷(解析版) 題型:填空題
若等差數(shù)列的前6項和為23,前9項和為57,則數(shù)列的前n項和Sn=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第6課時練習卷(解析版) 題型:填空題
已知等差數(shù)列{an}的前n項和為Sn,若=a100·+a101,且A、B、C三點共線(該直線不過點O),則S200=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第5課時練習卷(解析版) 題型:解答題
設{an}是公比不為1的等比數(shù)列,其前n項和為Sn,且a5,a3,a4成等差數(shù)列.
(1)求數(shù)列{an}的公比;
(2)證明:對任意k∈N+,Sk+2,Sk,Sk+1成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第4課時練習卷(解析版) 題型:填空題
一個等差數(shù)列前4項之和為26,最末4項之和為110,所有項之和為187,則它的項數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第2課時練習卷(解析版) 題型:填空題
(1)等差數(shù)列{an}中,Sn是{an}前n項和,已知S6=2,S9=5,則S15=________;
(2)給定81個數(shù)排成如圖所示的數(shù)表,若每行9個數(shù)與每列的9個數(shù)按表中順序構成等差數(shù)列,且表中正中間一個數(shù)a55=5,則表中所有數(shù)之和為________.
a11 | a12 | … | a19 |
a21 | a22 | … | a29 |
… | … | … | … |
a91 | a92 | … | a99 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com