【題目】已知函數(shù)
(1)判斷的奇偶性并證明;
(2)若,求的取值范圍.[來
【答案】(1)奇函數(shù)(2)
【解析】
試題分析:(1)判斷函數(shù)奇偶性首先判斷函數(shù)定義域是否對稱,再判斷的關(guān)系確定奇偶性;(2)將原函數(shù)式結(jié)合復(fù)合函數(shù)單調(diào)性判定方法可得到函數(shù)單調(diào)性,進而可化簡不等式得到m的不等式,可求m得取值范圍
試題解析:(1)判斷:f(x)為奇函數(shù),-----------------------1分
證明如下:
因為,定義域為關(guān)于原點對稱---------------------3分
-----------------6分
(2)為上的減函數(shù),--------------------8分
由復(fù)合函數(shù)的單調(diào)性可知f(x)在定義域上是減函數(shù),---------------9分
所以有解得:------------------12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}.
(1)是否存在實數(shù)m,使x∈P是x∈S的充要條件,若存在,求出m的范圍;
(2)是否存在實數(shù)m,使x∈P是x∈S的必要條件,若存在,求出m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點,點在直線上運動,過點與垂直的直線和線段的垂直平分線相交于點。
(1)求動點的軌跡的方程;
(2)過(1)中軌跡上的點作兩條直線分別與軌跡相交于,兩點。試探究:當(dāng)直線的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓的上、下焦點,是拋物線的焦點,點是與在第二象限的交點,且.
(1)求橢圓的方程;
(2)與圓相切的直線交橢圓于,若橢圓上一點滿足,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點,且焦點為,直線與拋物線相交于兩點.
(1)求拋物線的方程,并求其準(zhǔn)線方程;
(2)若直線經(jīng)過拋物線的焦點,當(dāng)線段的長等于5時,求直線方程.
(3)若,證明直線必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上具有單調(diào)性,求實數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“因為四邊形ABCD是矩形,所以四邊形ABCD的對角線相等.”補充以上推理的大前提( )
A. 正方形都是對角線相等的四邊形 B. 矩形都是對角線相等的四邊形
C. 等腰梯形都是對角線相等的四邊形 D. 矩形都是對邊平行且相等的四邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一項中學(xué)生近視情況的調(diào)查中,某校男生150名中有80名近視,女生140名中有70名近視,在檢驗這些中學(xué)生眼睛近視是否與性別有關(guān)時用什么方法最有說服力( )
A. 平均數(shù)與方差 B. 回歸分析
C. 獨立性檢驗 D. 概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)我國發(fā)射的天宮一號飛行器需要建造隔熱層.已知天宮一號建造的隔熱層必須使用20年,每厘米厚的隔熱層建造成本是6萬元,天宮一號每年的能源消耗費用H(萬元)與隔熱層厚度(厘米)滿足關(guān)系式:(當(dāng)時表示無隔熱層),若無隔熱層,則每年能源消耗費用為8萬元.設(shè)為隔熱層建造費用與20年的能源消耗費用之和.
(I)求的值和的表達式;
(II)當(dāng)隔熱層修建多少厘米厚時,總費用最小,并求出最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com