【題目】已知函數(shù) fx)=a|sinx|+|cosx|)﹣sin2x1,aR

1)寫出函數(shù) fx)的最小正周期(不必寫出過程);

2)求函數(shù) fx)的最大值;

3)當(dāng)a1時,若函數(shù) fx)在區(qū)間(0,kπ)(kN*)上恰有2015個零點,求k的值.

【答案】1)最小正周期為π.(2)見解析(3k1008

【解析】

1)由題意結(jié)合周期函數(shù)的定義直接求解即可;

2)令,t[1],則當(dāng)時,,

當(dāng)時,,易知,分類比較、的大小即可得解;

3)轉(zhuǎn)化條件得當(dāng)且僅當(dāng)sin2x0時,fx)=0,則x∈(0,π]時,fx)有且僅有兩個零點,結(jié)合函數(shù)的周期即可得解.

1)函數(shù) fx)的最小正周期為π

2)∵fx)=a|sinx|+|cosx|)﹣sin2x1

asin2x1asin2x+1),

t,t[1,],

當(dāng)時,,

當(dāng)時,

.

,

,

∴當(dāng)時,最大值為;當(dāng),最大值為.

3)當(dāng)a1時,fx,

fx)=0,則,

∴當(dāng)且僅當(dāng)sin2x0時,fx)=0,

x∈(0,π]時,fx)有且僅有兩個零點分別為,π,

20152×1007+1,

k1008

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若處的切線與直線平行,求的值;

2)討論函數(shù)的單調(diào)區(qū)間;

3)若函數(shù)的圖象與軸交于A,B兩點,線段AB中點的橫坐標(biāo)為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=exax

1)討論函數(shù)fx)的單調(diào)性;

2)若存在x1x2,且滿足fx1)=(x2).證明

3)證明:nN).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三共有1000位學(xué)生,為了分析某次的數(shù)學(xué)考試成績,采取隨機抽樣的方法抽取了50位高三學(xué)生的成績進(jìn)行統(tǒng)計分析,得到如圖所示頻數(shù)分布表:

分組

頻數(shù)

3

11

18

12

6

(1)根據(jù)頻數(shù)分布表計算成績在的頻率并計算這組數(shù)據(jù)的平均值(同組的數(shù)據(jù)用該組區(qū)間的中點值代替);

(2)用分層抽樣的方法從成績在的學(xué)生中共抽取5人,從這5人中任取2人,求成績在中各有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一種拋硬幣游戲的規(guī)則是:拋擲一枚硬幣,每次正面向上得1分,反面向上得2分.

(1)設(shè)拋擲5次的得分為,求的分布列和數(shù)學(xué)期望;

(2)求恰好得到分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=exsinx,gx)為fx)的導(dǎo)函數(shù),

1)求fx)的單調(diào)區(qū)間;

2)當(dāng)x[,π],證明:fx+gx)(πx≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).

表中,.

1)根據(jù)散點圖判斷,哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有位學(xué)生申請、、三所大學(xué)的自主招生.若每位學(xué)生只能申請其中一所大學(xué),且申請其中任何一所大學(xué)是等可能的.

1)求恰有人申請大學(xué)的概率;

2)求被申請大學(xué)的個數(shù)的概率分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案