精英家教網 > 高中數學 > 題目詳情

【題目】設函數,其中為自然對數的底數.

(Ⅰ)若曲線軸上的截距為-1,且在點處的切線垂直于直線,求實數的值;

(Ⅱ)記的導函數為, 在區(qū)間上的最小值為,求的最大值.

【答案】(Ⅰ) ;(Ⅱ)

【解析】試題分析:(Ⅰ)通過,解得.由,解得

(Ⅱ)求出函數的導數,通過,利用新函數的導數 ,利用(1)當, 上的單調性,推出時,推出;當時,通過導數求解 .

試題解析:(Ⅰ)∵曲線軸上的截距為-1,

,解得

又∵,且在點處的切線垂直于直線,

∴曲線在點處的切線的斜率為

,解得

,

(Ⅱ)∵,即

(1)當時,在, 上是增函數,

所以;

(2)當,即時,

∵令,在上解得

上是減函數,在上是增函數.

,則, , ,

所以上是減函數, ,即

(3)當時,在, 上是減函數,

所以

綜上可得,即的最大值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(2017屆高三第二次湖北八校文數試卷第16題)祖暅(公元前5~6世紀)是我國齊梁時代的數學家,是祖沖之的兒子.他提出了一條原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.設由橢圓所圍成的平面圖形繞軸旋轉一周后,得一橄欖狀的幾何體

(如圖)(稱為橢球體),課本中介紹了應用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在上的奇函數.

(1)求的解析式;

(2)證明:函數在定義域上是增函數;

(3)設是否存在正實數使得函數內的最小值為?若存在,求出的值;若存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某項考試按科目A、科目B依次進行,只有當科目A成績合格時,才可繼續(xù)參加科目B的考試.已知每個科目只允許有一次補考機會,兩個科目成績均合格方可獲得證書.現某人參加這項考試,科目A每次考試成績合格的概率均為,科目B每次考試成績合格的概率均為.假設各次考試成績合格與否均互不影響.

1)求他不需要補考就可獲得證書的概率;

2)在這項考試過程中,假設他不放棄所有的考試機會,記他參加考試的次數為,求的分布列及數學期望E.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)生產的乒乓球被指定為乒乓球比賽專用球.日前有關部門對某批產品進行了抽樣檢測,檢測結果如下表所示:

抽取球數n

50

100

200

500

1 000

2 000

優(yōu)等品數m

45

92

194

470

954

1 902

優(yōu)等品頻率

(1)計算表中乒乓球為優(yōu)等品的頻率.

(2)從這批乒乓球產品中任取一個,檢測出為優(yōu)等品的概率是多少?(結果保留到小數點后三位)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校團委組織了“文明出行,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(單位:分)整理后,得到如圖頻率分布直方圖(其中分組區(qū)間為[40,50),[50,60),…,[90,100]).

(1)求成績在[70,80)的頻率和[70,80)這組在頻率分布直方圖中的縱坐標a的值;

(2)求這次考試平均分的估計值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為.

(1)求出圓的直角坐標方程;

(2)已知圓軸相交于 兩點,直線 關于點對稱的直線為.若直線上存在點使得,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)證明:函數上單調遞增;

(Ⅱ)若, ,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為自然對數的底數).

(1)若, ,求函數的單調區(qū)間;

(2)若,且方程內有解,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案