【題目】如圖,已知橢圓,點(diǎn)B是其下頂點(diǎn),過(guò)點(diǎn)B的直線交橢圓C于另一點(diǎn)A(A點(diǎn)在軸下方),且線段AB的中點(diǎn)E在直線上.

(1)求直線AB的方程;

(2)若點(diǎn)P為橢圓C上異于A、B的動(dòng)點(diǎn),且直線AP,BP分別交直線于點(diǎn)M、N,證明:OM·ON為定值.

【答案】(1)(2)詳見(jiàn)解析

【解析】

試題分析:(1)兩點(diǎn)確定一條直線,所以只需再確定A點(diǎn)坐標(biāo)即可,這可利用A在橢圓上及AB中點(diǎn)在直線上聯(lián)立方程組解得:A,),從而根據(jù)兩點(diǎn)式求出直線AB的方程為

(2)本題涉及的條件為坐標(biāo),所以用分別表示M點(diǎn)、N點(diǎn)坐標(biāo)就是解題方法:由AP,M三點(diǎn)共線,又點(diǎn)M在直線y=x上,解得M點(diǎn)的橫坐標(biāo),由B,P,N三點(diǎn)共線,點(diǎn)N在直線y=x上,,解得N點(diǎn)的橫坐標(biāo).所以OM·ON==2

=,又,所以OM·ON====

試題解析:解:(1)設(shè)點(diǎn)Em,m),由B0,-2)得A2m,2m+2).

代入橢圓方程得,即,

解得(舍). 3

所以A),

故直線AB的方程為 6

2)設(shè),則,即

設(shè),A,PM三點(diǎn)共線,即,

,

又點(diǎn)M在直線y=x上,解得M點(diǎn)的橫坐標(biāo), 9

設(shè),由B,P,N三點(diǎn)共線,即,

,

點(diǎn)N在直線y=x上,,解得N點(diǎn)的橫坐標(biāo) 12

所以OM·ON==2

==== 16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A( +1,0),B(0,2).若直線l:y=k(x﹣1)+1與線段AB相交,則直線l傾斜角α的取值范圍是(
A.[ , ]
B.[0, ]
C.[0, ]∪[ ,π)
D.[ ,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列不等式中解集為實(shí)數(shù)集R的是(
A.x2+4x+4>0
B.
C.x2﹣x+1≥0
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)貨卡車(chē)以每小時(shí)x千米的速度勻速行駛130千米(50≤x≤100)(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車(chē)每小時(shí)耗油(2+ )升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車(chē)總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車(chē)的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)底數(shù).

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間;

(3)已知,若函數(shù)對(duì)任意都成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年推出一種新型家用轎車(chē),購(gòu)買(mǎi)時(shí)費(fèi)用為14.4萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽車(chē)油費(fèi)共0.7萬(wàn)元,
汽車(chē)維修費(fèi)為:第一年無(wú)維修費(fèi)用,第二年為0.2萬(wàn)元,從第三年起,每年的維修費(fèi)用均比上一年增加0.2萬(wàn)元
(1)設(shè)該輛轎車(chē)使用n年的總費(fèi)用(包括購(gòu)買(mǎi)費(fèi)用,保險(xiǎn)費(fèi),養(yǎng)路費(fèi),汽車(chē)費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式.
(2)這種汽車(chē)使用多少年報(bào)廢最合算(即該車(chē)使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分16分)如圖,在平面直角坐標(biāo)系中,離心率為的橢圓 的左頂點(diǎn)為,過(guò)原點(diǎn)的直線(與坐標(biāo)軸不重合)與橢圓交于兩點(diǎn),直線分別與軸交于兩點(diǎn).若直線斜率為時(shí),

1)求橢圓的標(biāo)準(zhǔn)方程;

2)試問(wèn)以為直徑的圓是否經(jīng)過(guò)定點(diǎn)(與直線的斜率無(wú)關(guān))?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),
第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績(jī)高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,F1,F2分別是橢圓的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°.

(Ⅰ)求橢圓C的離心率;

(Ⅱ)已知△AF1B的面積為,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案