【題目】已知橢圓C1:x2=1(a>1)與拋物線C2:x2=4y有相同焦點F1.
(1)求橢圓C1的標準方程;
(2)已知直線l1過橢圓C1的另一焦點F2,且與拋物線C2相切于第一象限的點A,設(shè)平行l1的直線l交橢圓C1于B,C兩點,當△OBC面積最大時,求直線l的方程.
【答案】(1) (2)
【解析】
(1)求出拋物線的焦點,再由橢圓中即可求解.
(2)設(shè)出直線方程,與拋物線聯(lián)立,求出直線的方程,再由直線平行設(shè)出直線的方程,與橢圓聯(lián)立,由韋達定理求弦長,根據(jù)三角形的面積公式配方即可求解.
(1)由于拋物線的焦點為,得到c=1,又到.
橢圓的標準方程為
(2)設(shè)的方程為y=kx-1,由題可知,k>0.聯(lián)立
得
所以得,k=1
切線方程
由設(shè)直線的方程為,聯(lián)立方程組
由,消y整理得
設(shè),應(yīng)用韋達定理
可得
由點O到直線l的距離為則
當,面積最大.
所以
所以直線l的方程為:y=x
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校組織的高二女子排球比賽中,有、兩個球隊進入決賽,決賽采用7局4勝制.假設(shè)、兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為.
(Ⅰ)求大于4的概率;
(Ⅱ)求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個關(guān)于圓錐曲線的命題:
①設(shè)A,B是兩個定點,為非零常數(shù),若,則P的軌跡是雙曲線;
②過定圓C上一定點A作圓的弦AB,O為原點,若向量.則動點P的軌跡是橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④雙曲線與橢圓有相同的焦點.
其中正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列三種說法:
①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.
③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.
其中所有正確說法的序號為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是國家統(tǒng)計局發(fā)布的2018年3月到2019年3月全國居民消費價格的漲跌幅情況折線圖(注:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比),根據(jù)該折線圖,下列結(jié)論正確的是( )
A.2018年3月至2019年3月全國居民消費價格同比均上漲
B.2018年3月至2019年3月全國居民消費價格環(huán)比有漲有跌
C.2019年3月全國居民消費價格同比漲幅最大
D.2019年3月全國居民消費價格環(huán)比變化最快
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】港珠澳大橋是中國建設(shè)史上里程最長,投資最多,難度最大的跨海橋梁項目,大橋建設(shè)需要許多橋梁構(gòu)件。從某企業(yè)生產(chǎn)的橋梁構(gòu)件中抽取件,測量這些橋梁構(gòu)件的質(zhì)量指標值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標值落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些橋梁構(gòu)件質(zhì)量指標值落在區(qū)間內(nèi)的頻率;
(2)用分層抽樣的方法在區(qū)間內(nèi)抽取一個容量為的樣本,將該樣本看成一個總體,從中任意抽取件橋梁構(gòu)件,求這件橋梁構(gòu)件都在區(qū)間內(nèi)的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級,0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴重污染.某環(huán)保人士從當?shù)啬衬甑腁QI記錄數(shù)據(jù)中,隨機抽取了15天的AQI數(shù)據(jù),用如圖所示的莖葉圖記錄.根據(jù)該統(tǒng)計數(shù)據(jù),估計此地該年空氣質(zhì)量為優(yōu)或良的天數(shù)約為__________.(該年為366天)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點
(1)求橢圓的方程;
(2)是否存在經(jīng)過點的直線,它與橢圓相交于兩個不同點,且滿足為坐標原點)關(guān)系的點也在橢圓上,如果存在,求出直線的方程;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com