【題目】在直角坐標(biāo)系中,設(shè)傾斜角為的直線的參數(shù)方程為(為參數(shù))與曲線(為參數(shù))相交于不同的兩點、.
(1)若,求線段的中點的直角坐標(biāo);
(2)若直線的斜率為,且過已知點,求的值.
【答案】(1);(2).
【解析】試題分析:(1)若,直線的參數(shù)方程為(為參數(shù)),代入曲線的普通方程,得,求出線段的中點的對應(yīng)的,即可求線段的中點的直角坐標(biāo);(2)若直線的斜率為,且過已知點,利用參數(shù)的幾何意義即可求得的值.
試題解析:(1)由曲線(為參數(shù)),
可得的普通方程是.
當(dāng)時,直線的參數(shù)方程為(為參數(shù)),
代入曲線的普通方程,得,
得,則線段的中點對應(yīng)的,
故線段的中點的直角坐標(biāo)為.
(2)將直線的參數(shù)方程代入曲線的普通方程,化簡得
,
則,
由已知得,故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn.已知2Sn=3n+3.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設(shè)有一個回歸方程=3-5x,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程=x+必過(,);
④在一個2×2列聯(lián)表中,由計算得K2=13.079,則有99%以上的把握認(rèn)為這兩個變量間有關(guān)系.
其中錯誤的個數(shù)是( )
本題可以參考獨立性檢驗臨界值表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
A. 0 B. 1
C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點及圓.
(1)設(shè)過點的直線與圓交于兩點,當(dāng)時,求以線段為直徑的圓的方程;
(2)設(shè)直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐P—A1B1C1D1,下部的形狀是正四棱柱ABCD—A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.
(1)若AB=6 m,PO1=2 m,則倉庫的容積是多少?
(2)若正四棱錐的側(cè)棱長為6 m,則當(dāng)PO1為多少時,倉庫的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為, ,直線交橢圓于, 兩點, 的周長為16, 的周長為12.
(1)求橢圓的標(biāo)準(zhǔn)方程與離心率;
(2)若直線與橢圓交于兩點,且是線段的中點,求直線的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,記兩條相互垂直的公路為l1,l2,山區(qū)邊界曲線為C,計劃修建的公路為l,如圖所示,M,N為C的兩個端點,測得點M到l1,l2的距離分別為5千米和40千米,點N到l1,l2的距離分別為20千米和2.5千米,以l2,l1所在的直線分別為x,y軸,建立平面直角坐標(biāo)系xOy,假設(shè)曲線C符合函數(shù)y= (其中a,b為常數(shù))模型.
(1)求a,b的值;
(2)設(shè)公路l與曲線C相切于P點,P的橫坐標(biāo)為t.
①請寫出公路l長度的函數(shù)解析式f(t),并寫出其定義域;
②當(dāng)t為何值時,公路l的長度最短?求出最短長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是直角梯形, , , , , 平面.
(Ⅰ)上是否存在點使平面,若存在,指出的位置并證明,若不存在,請說明理由;(Ⅱ)證明: ;
(Ⅲ)若,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,f(x)=2sin(x-A)cosx+sin(B+C)(x∈R),函數(shù)f(x)的圖象關(guān)于點對稱.
(1)當(dāng)時,求f(x)的值域;
(2)若a=7且,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com