過(guò)點(diǎn)(-3,2)且與
x2
9
+
y2
4
=1有相同焦點(diǎn)的橢圓的方程是( 。
A.
x2
15
+
y2
10
=1
B.
x2
225
+
y2
100
=1
C.
x2
10
+
y2
15
=1
D.
x2
100
+
y2
225
=1
由題意
x2
9
+
y2
4
=1的焦點(diǎn)坐標(biāo)(±
5
,0
),
所以2a=
(-3+
5
)2+22
+
(-3-
5
)2+22
=2
15
,
所以a=
15

所以b2=15-5=10
所以所求橢圓的方程為:
x2
15
+
y2
10
=1.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知A點(diǎn)的坐標(biāo)為(-
1
2
,0),B是圓F:(x-
1
2
2+y2=4上一動(dòng)點(diǎn),線段AB的垂直平分線交于BF于P,則動(dòng)點(diǎn)P的軌跡為( 。
A.圓B.橢圓
C.雙曲線的一支D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)雙曲線與橢圓
x2
27
+
y2
36
=1
有相同焦點(diǎn),且經(jīng)過(guò)點(diǎn)(
15
,4),求其方程.
(2)橢圓過(guò)兩點(diǎn)(
6
,1),(-
3
,-
2
),求其方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),長(zhǎng)軸的一個(gè)頂點(diǎn)坐標(biāo)為(2,0),離心率為
3
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F1,F(xiàn)2為橢圓C的焦點(diǎn),P為橢圓上一點(diǎn),且PF1⊥PF2,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓
x2
4
+
y2
5
=1
的一個(gè)焦點(diǎn)坐標(biāo)是(  )
A.(3,0)B.(0,3)C.(1,0)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),離心率為
2
2
的橢圓經(jīng)過(guò)點(diǎn)(
6
,1).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的一個(gè)焦點(diǎn)且互相垂直的直線l1,l2分別與橢圓交于A,B和C,D,是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|?若存在,求出實(shí)數(shù)λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且這個(gè)焦點(diǎn)到長(zhǎng)軸上較近的端點(diǎn)的距離是
10
-
5
,則此橢圓的方程是:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),它在x軸上的一個(gè)焦點(diǎn)與短軸兩端點(diǎn)連線互相垂直,且此焦點(diǎn)和x軸上的較近端點(diǎn)的距離為4(
2
-1),求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)F1,F(xiàn)2分別為橢C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右兩個(gè)焦點(diǎn),橢圓C上的點(diǎn)A(1,
3
2
)
到兩點(diǎn)的距離之和等于4.
(Ⅰ)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓上的動(dòng)點(diǎn)Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案