精英家教網 > 高中數學 > 題目詳情
已知橢圓C的中心在原點,長軸的一個頂點坐標為(2,0),離心率為
3
2

(1)求橢圓C的標準方程;
(2)設F1,F2為橢圓C的焦點,P為橢圓上一點,且PF1⊥PF2,求△PF1F2的面積.
(1)設橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,由已知a=2,
c
a
=
3
2

所以,a=2,c=
3
,b=1
,橢圓C的方程為
x2
4
+y2=1

(2)設P(x1,y1),由已知PF1⊥PF2,所以
PF1
PF2
=0
,
(-
3
-x1,-y1)•(
3
-x1,-y1)=0
,x12+y12=3,
又因為
x21
4
+
y21
=1

解得y1
3
3
,所以,△PF1F2的面積S=
1
2
×2c•|y1|=1
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

若△ABC的兩個頂點坐標,△ABC的周長為18,則頂點C的軌跡方程是    (   )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

曲線
x2
25
+
y2
16
=1與曲線
x2
25+k
+
y2
16+k
=1(k>-16)的(  )
A.長軸長相等B.短軸長相等C.離心率相等D.焦距相等

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系中,O為坐標原點,設過點P(3,
2
)
的直線l,與x軸交于點F(2,0),如果一個橢圓經過點P,且以點F為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓以對稱軸為坐標軸,且長軸是短軸的3倍,并且過點(3,0),求橢圓的標準方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓的中心在坐標原點,焦點在x軸上,橢圓與x軸的交點到兩焦點的距離分別是3和1,則橢圓的標準方程是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過點(-3,2)且與
x2
9
+
y2
4
=1有相同焦點的橢圓的方程是(  )
A.
x2
15
+
y2
10
=1
B.
x2
225
+
y2
100
=1
C.
x2
10
+
y2
15
=1
D.
x2
100
+
y2
225
=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知θ為斜三角形的一個內角,曲線F:x2sin2θcos2θ+y2sin2θ=cos2θ是( 。
A.焦點在x軸上,離心率為sinθ的雙曲線
B.焦點在x軸上,離心率為sinθ的橢圓
C.焦點在y軸上,離心率為|cosθ|的雙曲線
D.焦點在y軸上,離心率為|cosθ|的橢圓

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求以橢圓
x2
16
+
y2
9
=1的短軸的兩個端點為焦點,且過點A(4,-5)的雙曲線的標準方程.

查看答案和解析>>

同步練習冊答案