【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計(jì))即為中獎.
乙商場:從裝有3個白球3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即為中獎.問:購買該商品的顧客在哪家商場中獎的可能性大?
【答案】乙商場中獎的可能性大.
【解析】試題分析:分別計(jì)算兩種方案中獎的概率.先記出事件,得到試驗(yàn)發(fā)生包含的所有事件,和符合條件的事件,由等可能事件的概率公式得到.
試題解析:
如果顧客去甲商場,試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域?yàn)閳A盤的面積,陰影部分的面積為,
則在甲商場中獎的概率為;
如果顧客去乙商場,記3個白球?yàn)?/span>, , ,3個紅球?yàn)?/span>, , ,記(, )為一次摸球的結(jié)果,則一切可能的結(jié)果有:
, , , , , , , , , , , , , , ,共15種,
摸到的是2個紅球有, , ,共3種,
則在乙商場中獎的概率為,
又,則購買該商品的顧客在乙商場中獎的可能性大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù)
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;
(Ⅲ)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅳ)設(shè)關(guān)于的函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, ,函數(shù).
(1)求在區(qū)間上的最大值和最小值;
(2)若, ,求的值;
(3)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是一幾何體的平面展開圖,其中四邊形為正方形, , , , 為全等的等邊三角形, 分別為的中點(diǎn).在此幾何體中,下列結(jié)論中錯誤的為( )
A. 直線與直線共面 B. 直線與直線是異面直線
C. 平面平面 D. 面與面的交線與平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)f(x)=ax2﹣4bx+1.設(shè)集合P={1,2,3}和Q={﹣1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率
(1)已知關(guān)于x的二次函數(shù)f(x)=ax2﹣4bx+1.設(shè)集合P={1,2,3}和Q={﹣1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)在區(qū)間[1,5]和[2,4]上分別取一個數(shù),記為a,b,求方程 + =1表示焦點(diǎn)在x軸上且離心率小于 的橢圓的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓 上任取一點(diǎn) ,點(diǎn) 在 軸的正射影為點(diǎn) ,當(dāng)點(diǎn) 在圓上運(yùn)動時,動點(diǎn) 滿足 ,動點(diǎn) 形成的軌跡為曲線 .
(Ⅰ)求曲線 的方程;
(Ⅱ)點(diǎn) 在曲線 上,過點(diǎn) 的直線 交曲線 于 兩點(diǎn),設(shè)直線 斜率為 ,直線 斜率為 ,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個函數(shù)中,以π為最小正周期,且在區(qū)間 上為減函數(shù)的是( )
A.y=2|sinx|
B.y=cosx
C.y=sin2x
D.y=|cosx|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),橢圓C1: + =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e1;雙曲線C2: ﹣ =1的左、右焦點(diǎn)分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.
(Ⅰ)求C1、C2的方程;
(Ⅱ)過F1作C1的不垂直于y軸的弦AB,M為AB的中點(diǎn),當(dāng)直線OM與C2交于P,Q兩點(diǎn)時,求四邊形APBQ面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com