【題目】大學(xué)就業(yè)指導(dǎo)中心對該校畢業(yè)生就業(yè)情況進行跟蹤調(diào)查,發(fā)現(xiàn)不同的學(xué)歷對就業(yè)專業(yè)是否為畢業(yè)所學(xué)專業(yè)有影響,就業(yè)指導(dǎo)中心從屆的畢業(yè)生中,抽取了本科和研究生畢業(yè)生各名,得到下表中的數(shù)據(jù).
就業(yè)專業(yè) 畢業(yè)學(xué)歷 | 就業(yè)為所學(xué)專業(yè) | 就業(yè)非所學(xué)專業(yè) |
本科 | ||
研究生 |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯概率不超過的前提下認為就業(yè)專業(yè)是否為畢業(yè)所學(xué)專業(yè)與畢業(yè)生學(xué)歷有關(guān);
(2)為了進一步分析和了解本科畢業(yè)生就業(yè)的問題,按分層抽樣的原則從本科畢業(yè)生中抽取一個容量為的樣本,要從人中任取人參加座談,求被選取的人中至少有人就業(yè)非畢業(yè)所學(xué)專業(yè)的概率.
附:,
【答案】(1)能在犯錯概率不超過的前提下認為就業(yè)專業(yè)是否為畢業(yè)生所學(xué)專業(yè)與畢業(yè)生學(xué)歷有關(guān),詳見解析(2)
【解析】
(1)計算,與臨界值表作比較,得到答案.
(2)所取樣本中,就業(yè)為所學(xué)專業(yè)為人,設(shè)為,,,非所學(xué)專業(yè)為人,設(shè)為,,排列出所有情況共10種,滿足條件的7種,得到答案.
(1)由題知:,
故能在犯錯概率不超過的前提下認為就業(yè)專業(yè)是否為畢業(yè)生所學(xué)專業(yè)與畢業(yè)生學(xué)歷有關(guān).
(2)由題知,所取樣本中,就業(yè)為所學(xué)專業(yè)為人,設(shè)為,,,非所學(xué)專業(yè)為人,設(shè)為,.從人中任取人,其結(jié)果有,,,,,,,,,共種情形.
其中事件至少有人就業(yè)非所學(xué)專業(yè)為時事件,共有種情形,,即所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),是的導(dǎo)數(shù)(e為自然對數(shù)的底數(shù)).
I.當(dāng)時,求曲線在點()處的切線方程;
II.若當(dāng)時,不等式恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點為,離心率.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點M ,使得恒成立?若存在,求出點M的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為增強市民的節(jié)能環(huán)保意識,某市面向全市征召義務(wù)宣傳志愿者.從符合條件的 500 名志愿者中隨機抽取 100 名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)間是[20,25),[25,30),[30,35),[35,40),[40,45].
(1)求圖中x的值并根據(jù)頻率分布直方圖估計這 500 名志愿者中年齡在[35,40)歲的人數(shù);
(2)在抽出的 100 名志愿者中按年齡采用分層抽樣的方法抽取 20 名參加中心廣場的宣傳活動,再從這 20 名中采用簡單隨機抽樣方法選取 3 名志愿者擔(dān)任主要負責(zé)人.記這 3 名志愿者中“年齡低于 35 歲”的人數(shù)為 X,求 X 的分布列及均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校實行選科走班制度,張毅同學(xué)的選擇是地理生物政治這三科,且生物在B層班級,該校周一上午選科走班的課程安排如下表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法有__________種
第一節(jié) | 第二節(jié) | 第三節(jié) | 第四節(jié) |
地理1班 | 化學(xué)A層3班 | 地理2班 | 化學(xué)A層4班 |
生物A層1班 | 化學(xué)B層2班 | 生物B層2班 | 歷史B層1班 |
物理A層1班 | 生物A層3班 | 物理A層2班 | 生物A層4班 |
物理B層2班 | 生物B層1班 | 物理B層1班 | 物理A層4班 |
政治1班 | 物理A層3班 | 政治2班 | 政治3班 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在盒子里有大小相同,僅顏色不同的乒乓球共10個,其中紅球4個,白球3個,藍球3個。
(Ⅰ)現(xiàn)從中任取出一球確定顏色后放回盒子里,再取下一個球,重復(fù)以上操作,最多取3次,過程中如果取出藍色球則不再取球,求:
①最多取兩次就結(jié)束的概率;
②整個過程中恰好取到2個白球的概率;
(Ⅱ)若改為從中任取出一球確定顏色后不放回盒子里,再取下一個球。重復(fù)以上操作,最多取3次,過程中如果取出藍色球則不再取球,則設(shè)取球的次數(shù)為隨機變量求的分布列和數(shù)學(xué)期望,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績中,隨機抽取了名學(xué)生的成績得到如圖所示的頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計該校高三學(xué)生本次數(shù)學(xué)考試的平均分;
(2)若用分層抽樣的方法從分數(shù)在和的學(xué)生中共抽取人,該人中成績在的有幾人?
(3)在(2)中抽取的人中,隨機抽取人,求分數(shù)在和各人的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com