【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,PA⊥底面ABCD,PA=1,點(diǎn)M是棱PC上的一點(diǎn),且AM⊥PB.
(1)求三棱錐C﹣PBD的體積;
(2)證明:AM⊥平面PBD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是圓上的任意一點(diǎn),是過(guò)點(diǎn)且與軸垂直的直線,是直線與軸的交點(diǎn),點(diǎn)在直線上,且滿足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)已知點(diǎn),過(guò)的直線交曲線于兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某輪船公司年初以200萬(wàn)元購(gòu)進(jìn)一艘輪船,以每年40萬(wàn)元的價(jià)格出租給海運(yùn)公司.輪船公司負(fù)責(zé)輪船的維護(hù),第一年維護(hù)費(fèi)為4萬(wàn)元,隨著輪船的使用與磨損,以后每年的維護(hù)費(fèi)比上一年多2萬(wàn)元,同時(shí)該輪船第年末可以以萬(wàn)元的價(jià)格出售.
(1)寫(xiě)出輪船公司到第年末所得總利潤(rùn)萬(wàn)元關(guān)于的函數(shù)解析式,并求的最大值;
(2)為使輪船公司年平均利潤(rùn)最大,輪船公司應(yīng)在第幾年末出售輪船?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面立角坐標(biāo)系中,過(guò)點(diǎn)的圓的圓心在軸上,且與過(guò)原點(diǎn)傾斜角為的直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)在直線上,過(guò)點(diǎn)作圓的切線、,切點(diǎn)分別為、,求經(jīng)過(guò)、、、四點(diǎn)的圓所過(guò)的定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:的離心率為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)點(diǎn),點(diǎn)在軸上,過(guò)點(diǎn)的直線交橢圓交于,兩點(diǎn).
①若直線的斜率為,且,求點(diǎn)的坐標(biāo);
②設(shè)直線,,的斜率分別為,,,是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定數(shù)列,若滿足且,對(duì)于任意的n,,都有,則稱數(shù)列為“指數(shù)型數(shù)列”.
Ⅰ已知數(shù)列,的通項(xiàng)公式分別為,,試判斷,是不是“指數(shù)型數(shù)列”;
Ⅱ若數(shù)列滿足:,,判斷數(shù)列是否為“指數(shù)型數(shù)列”,若是給出證明,若不是說(shuō)明理由;
Ⅲ若數(shù)列是“指數(shù)型數(shù)列”,且,證明:數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:
①BD⊥AC;
②△BAC是等邊三角形;
③三棱錐D-ABC是正三棱錐;
④平面ADC⊥平面ABC.
其中正確的是( )
A.①②④B.①②③
C.②③④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)相互垂直的直線,分別過(guò)橢圓的左、右焦點(diǎn),,且與橢圓的交點(diǎn)分別為、和、.
(1)當(dāng)的傾斜角為時(shí),求以為直徑的圓的標(biāo)準(zhǔn)方程;
(2)問(wèn)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)與函數(shù)在點(diǎn)處有共同的切線,求的值;
(2)證明:;
(3)若不等式對(duì)所有,都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com