【題目】已知函數(shù),.
(Ⅰ)當時,求函數(shù)在區(qū)間上的最值;
(Ⅱ)若,是函數(shù)的兩個極值點,且,求證:.
【答案】(Ⅰ) 最小值為,最大值為; (Ⅱ)證明見解析。
【解析】
(Ⅰ)求出函數(shù)f(x)的定義域,運用導函數(shù)判斷函數(shù)的單調性,求解函數(shù)的最值即可.
(Ⅱ)x1,x2是函數(shù)的兩個極值點,所以(x1)=(x2)=0.令通過及構造函數(shù),利用函數(shù)的導數(shù)判斷函數(shù)的單調性,推出,所以,即可證明結論.
(Ⅰ)當時,,函數(shù)的定義域為,
所以,
當時,,函數(shù)單調遞減;
當時,,函數(shù)單調遞增.
所以函數(shù)在區(qū)間上的最小值為,
又,
顯然
所以函數(shù)在區(qū)間上的最小值為,最大值為.
(Ⅱ)因為
所以,因為函數(shù)有兩個不同的極值點,
所以有兩個不同的零點.
因此,即 有兩個不同的實數(shù)根,
設,則,
當時,,函數(shù)單調遞增;
當,,函數(shù)單調遞減;
所以函數(shù)的最大值為 。
所以當直線與函數(shù)圖像有兩個不同的交點時,,且
要證,只要證,
易知函數(shù)在上單調遞增,
所以只需證,而,所以
即證,
記,則恒成立,
所以函數(shù)在上單調遞減,所以當時
所以,因此.
科目:高中數(shù)學 來源: 題型:
【題目】為響應“生產(chǎn)發(fā)展、生活富裕、鄉(xiāng)風文明、村容整潔、管理民主”的社會主義新農(nóng)村建設,某自然村將村邊一塊廢棄的扇形荒地(如圖)租給蜂農(nóng)養(yǎng)蜂、產(chǎn)蜜與售蜜.已知扇形AOB中,,百米),荒地內(nèi)規(guī)劃修建兩條直路AB,OC,其中點C在弧AB上(C與A,B不重合),在小路AB與OC的交點D處設立售蜜點,圖中陰影部分為蜂巢區(qū),空白部分為蜂源植物生長區(qū).設,蜂巢區(qū)的面積為S(平方百米).
(1)求S關于的函數(shù)關系式;
(2)當為何值時,蜂巢區(qū)的面積S最小,并求此時S的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的極值;
(2)若在上為單調函數(shù),求的取值范圍;
(3)設,若在上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐,側面是正三角形,底面為邊長2的菱形,,.
(1)設平面平面,求證:;
(2)求多面體的體積;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
①經(jīng)過定點的直線都可以用方程表示;
②經(jīng)過定點的直線都可以用方程表示;
③不經(jīng)過原點的直線都可以用方程表示;
④經(jīng)過任意兩個不同的點、的直線都可以用方程表示,
其中真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為美化城市環(huán)境,相關部門需對一半圓形中心廣場進行改造出新,為保障市民安全,施工隊對廣場進行圍擋施工.如圖,圍擋經(jīng)過直徑的兩端點A,B及圓周上兩點C,D圍成一個多邊形ABPQR,其中AR,RQ,QP,PB分別與半圓相切于點A,D,C,B.已知該半圓半徑OA長30米,∠COD為60°,設∠BOC為.
(1)求圍擋內(nèi)部四邊形OCQD的面積;
(2)為減少對市民出行的影響,圍擋部分面積要盡可能小.求該圍擋內(nèi)部多邊形ABPQR面積的最小值?并寫出此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】青島市黃島區(qū)金沙灘海濱浴場是一個受廣大沖浪愛好者喜愛的沖浪地點.已知該海濱浴場的海浪高度是時間t(,單位:小時)的函數(shù),記作.經(jīng)長期觀察,的曲線可近似地看成是函數(shù)的圖象,其中.用“五點法”函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
(1)請將上表數(shù)據(jù)補充完整,填寫在相應位置,并求出函數(shù)的函數(shù)表達式;
(2)依據(jù)規(guī)定,當海浪高度高于1m時才對沖浪愛好者開放,請依據(jù)(1)中的結論,判斷一天內(nèi)的上午8:00到晚上20:00之間有多少時間可供沖浪者進行運動?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的容積為立方米,且.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為()千元.設該容器的建造費用為千元.
(1)寫出關于的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該容器的建造費用最小時的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com