橢圓方程為,過點(diǎn)的直線交橢圓于為坐標(biāo)原點(diǎn),點(diǎn)滿足,當(dāng)繞點(diǎn)旋轉(zhuǎn)時(shí),求動(dòng)點(diǎn)的軌跡方程.
【解析】設(shè)直線l:y=kx+1,然后直線與橢圓方程聯(lián)立,消去y后,再利用韋達(dá)定理及這個(gè)條件,可求出動(dòng)點(diǎn)P關(guān)于k的參數(shù)方程,然后消去參數(shù)k,即可得到普通方程,消參時(shí)要注意參數(shù)的取值范圍.
解:是所求軌跡上的任一點(diǎn)
①當(dāng)斜率存在時(shí),的方程為, ……1分
由
………………………………3分
…………………………………5分
由得
即 ………………………………7分
消得: …………………………………10分
當(dāng)斜率不存在時(shí),的中點(diǎn)為坐標(biāo)原點(diǎn),也適合方程 ……………11分
∴ 的軌跡方程: ……………………………12分
解法2 :解:設(shè)是所求軌跡上的任一點(diǎn), ……1分
……………4分
當(dāng)時(shí) ……………………………6分
又 ……………………………9分
…………………………10分
當(dāng)時(shí),的中點(diǎn)為坐標(biāo)原點(diǎn),也適合方程 ……………11分
∴ 的軌跡方程: ……………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
OA |
OB |
12 |
5 |
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
4 |
3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
6 |
| ||
2 |
1 |
2 |
AB |
AN |
BD |
BN |
5 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建福州市畢業(yè)班質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓C:的離心率為,
直線:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長(zhǎng)為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn).設(shè)直線的斜率,在軸上是否存在點(diǎn),使得是以GH為底邊的等腰三角形. 如果存在,求出實(shí)數(shù)的取值范圍,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂
直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)當(dāng)P不在軸上時(shí),在曲線上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱,若存在,
求出的斜率范圍,若不存在,說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com