已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂
直于點,線段垂直平分線交于點,求點的軌跡的方程;
(3)當P不在軸上時,在曲線上是否存在兩個不同點C、D關于對稱,若存在,
求出的斜率范圍,若不存在,說明理由。
(Ⅰ) ;(Ⅱ);
(3)在曲線上不存在兩個不同點C、D關于對稱
【解析】本試題主要是考查了橢圓的方程求解以及直線與橢圓的位置關系的綜合運用。
(1)利用橢圓的幾何性質(zhì)和直線與圓相切得到橢圓的方程。
(2)∵MP=MF2,
∴動點M到定直線的距離等于它到定點F1(1,0)的距離,
∴動點M的軌跡是C為l1準線,F(xiàn)2為焦點的拋物線可知結論。
(3)設點的坐標,利用對稱性來分析證明不存在符合題意的結論。
解:(Ⅰ)∵
∵直線相切,
∴ ∴
∵橢圓C1的方程是
(Ⅱ)∵MP=MF2,
∴動點M到定直線的距離等于它到定點F1(1,0)的距離,
∴動點M的軌跡是C為l1準線,F(xiàn)2為焦點的拋物線 ………………6分
∴點M的軌跡C2的方程為 …………7分
(3)顯然不與軸垂直,設 (,), (,),且≠,則 =.
若存在C、D關于對稱,則=- ∵≠0,∴≠0
設線段的中點為,則=(+)=,=,
將代入方程求得:=-( -)=(-)
∵-=-≠1∴ ≠()= ∴線段的中點不在直線上.所以在曲線上不存在兩個不同點C、D關于對稱
科目:高中數(shù)學 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com