已知函數(shù).
(1) 試判斷函數(shù)在上單調(diào)性并證明你的結(jié)論;
(2) 若恒成立, 求整數(shù)的最大值;
(3) 求證:.
(1)上是減函數(shù)
(2)正整數(shù)k的最大值是3
(3)由(Ⅱ)知∴利用放縮法得到。
解析試題分析:解:(1)
上是減函數(shù) 4分
(2)即h(x)的最小值大于k.
則上單調(diào)遞增,
又 存在唯一實根a, 且滿足
當
∴ 故正整數(shù)k的最大值是3 ----9分
(3)由(Ⅱ)知∴
令, 則
∴l(xiāng)n(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]
∴(1+1×2)(1+2×3)…[1+n(n+1)]>e2n-3 14分
考點:導數(shù)的運用
點評:主要是考查了導數(shù)在研究函數(shù)單調(diào)性的運用,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
設是同時符合以下性質(zhì)的函數(shù)組成的集合:
①,都有;②在上是減函數(shù).
(1)判斷函數(shù)和()是否屬于集合,并簡要說明理由;
(2)把(1)中你認為是集合中的一個函數(shù)記為,若不等式對任意的總成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,函數(shù)恒成立,求實數(shù)的取值范圍;
(Ⅲ)設正實數(shù)滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)是定義域為的奇函數(shù),且當時,
,(。
(1)求實數(shù)的值;并求函數(shù)在定義域上的解析式;
(2)求證:函數(shù)上是增函數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知.
(1)若a=0時,求函數(shù)在點(1,)處的切線方程;
(2)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(3)令是否存在實數(shù)a,當是自然對數(shù)的底)時,函數(shù) 的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù) .
(1)若,求的單調(diào)區(qū)間及的最小值;
(2)若,求的單調(diào)區(qū)間;
(3)試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=(m為常數(shù)0<m<1),且數(shù)列{f()}是首項為2,公差為2的等差數(shù)列.
(1)=f(),當m=時,求數(shù)列{}的前n項和;
(2)設=·,如果{}中的每一項恒小于它后面的項,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,函數(shù).
(1)若函數(shù)在區(qū)間內(nèi)是減函數(shù),求實數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com