【題目】已知為拋物線的焦點,以為圓心作半徑為的圓,圓與軸的負半軸交于點,與拋物線分別交于點.
(1)若為直角三角形,求半徑的值;
(2)判斷直線與拋物線的位置關(guān)系,并給出證明.
【答案】(1) ;(2) 直線與拋物線相切.
【解析】
(1)由對稱性可知, 為等腰直角三角形,且軸, 為直徑,再根據(jù)的橫坐標為,代入拋物線的方程求解縱坐標即可得半徑.
(2)畫圖觀察可知與拋物線相切,再設(shè),根據(jù)圓的半徑相等求得點坐標.再根據(jù)導(dǎo)數(shù)的幾何意義求解拋物線在處的切線斜率,進而證明與直線的斜率相等即可.
(1)由拋物線與圓的對稱性可知, 點關(guān)于軸對稱,故為直角.故為等腰直角三角形, 且軸,為直徑.故的橫坐標為,代入可得.
故.
(2)不妨設(shè).則根據(jù)拋物線的定義以及圓的半徑相等有,故的橫坐標為.即.
故直線的斜率為.
又拋物線的上半部分為函數(shù),故,故在處切線的斜率為.故直線為在處切線.
故直線與拋物線相切.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為F,直線l與拋物線C交于A,B兩點,O是坐標原點.
(1)若直線l過點F且,求直線l的方程;
(2)已知點,若直線l不與坐標軸垂直,且,證明:直線l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)當a=2時,求曲線在點處的切線方程;
(II)設(shè)函數(shù),z.x.x.k討論的單調(diào)性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,四邊形,均為正方形,且,M為的中點,N為的中點.
(1)求證:平面ABC;
(2)求二面角的正弦值;
(3)設(shè)P是棱上一點,若直線PM與平面所成角的正弦值為,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
(1)證明:AD⊥PB.
(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,將的圖象向左平移個單位后,所得圖象關(guān)于原點對稱,則函數(shù)的圖象( )
A.關(guān)于直線對稱B.關(guān)于直線對稱
C.關(guān)于點(,0)對稱D.關(guān)于點(,0)對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,是橢圓的左,右焦點,橢圓上一點滿足軸,,.
(1)求橢圓的標準方程;
(2)過的直線交橢圓于兩點,當的內(nèi)切圓面積最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,為了更好地了解學(xué)生線上學(xué)習的情況,某興趣小組在網(wǎng)上隨機抽取了100名學(xué)生對其線上學(xué)習滿意情況進行調(diào)查,其中男女比例為2∶3,其中男生有24人滿意,女生有12人不滿意.
(1)完成列聯(lián)表,并回答是否有95%把握認為“線上學(xué)習是否滿意與性別有關(guān)”
滿意 | 不滿意 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)從對線上學(xué)習滿意的學(xué)生中,利用分層抽樣抽取6名學(xué)生,再在6名學(xué)生中抽取3名,記抽到的女生人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com