【題目】函數(shù)f(x)= 的定義域是(
A.(0,2)
B.[0,2]
C.(0,1)∪(1,2)
D.[0,1)∪(1,2]

【答案】D
【解析】解:由
解①得:0≤x≤2.
解②得:x≠1.
∴0≤x≤2且x≠1.
∴函數(shù)f(x)= 的定義域是[0,1)∪(1,2].
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的定義域及其求法的相關(guān)知識(shí),掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=π/2,AB=BC=2AD=4,E,F(xiàn)分別是AB,CD上的點(diǎn),EF∥BC,AE=x,G是BC的中點(diǎn),沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)當(dāng)x=2時(shí),①求證:BD⊥EG;②求二面角D﹣BF﹣C的余弦值;
(2)三棱錐D﹣FBC的體積是否可能等于幾何體ABE﹣FDC體積的一半?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】非空集合A中的元素個(gè)數(shù)用(A)表示,定義(A﹣B)= ,若A={﹣1,0},B={x||x2﹣2x﹣3|=a},且(A﹣B)≤1,則a的所有可能值為(
A.{a|a≥4}
B.{a|a>4或a=0}
C.{a|0≤a≤4}
D.{a|a≥4或a=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱底面, , , 是棱的中點(diǎn).

(Ⅰ)證明:平面平面

(Ⅱ)求平面將此三棱柱分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn).線段AQ的垂直平分線與CQ的連線交于點(diǎn)M,則M的軌跡方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)= 是奇函數(shù),f(x)=log4(4x+1)﹣mx是偶函數(shù).
(1)求m+n的值;
(2)設(shè)h(x)=f(x)+ x,若g(x)>h[log4(2a+1)]對(duì)任意x≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若全集U=R,函數(shù)y= + 的定義域?yàn)锳,函數(shù)y= 的值域?yàn)锽.
(1)求集合A,B;
(2)求(UA)∩(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)中不表示同一函數(shù)的是(
A.f(x)=lgx2 , g(x)=2lg|x|
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.f(x)=|x+1|,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體的六條棱中,有五條棱長(zhǎng)都等于a,則該四面體的體積的最大值為(
A. ?a3
B. ?a3
C. ?a3
D. ?a3

查看答案和解析>>

同步練習(xí)冊(cè)答案