已知三點(diǎn)A(x0,y0)、B(1,1)、C(5,2),如果一個(gè)線性規(guī)劃問題的可行域是△ABC的邊界及其內(nèi)部,線性目標(biāo)函數(shù)z=ax+by在點(diǎn)B處取得最小值3,在點(diǎn)C處取得最大值12,則下列關(guān)系成立的是


  1. A.
    3≤x0+2y0≤12
  2. B.
    x0+2y0≤3或x0+2y0≥12
  3. C.
    3≤2x0+y0≤12
  4. D.
    2x0+y0≤3或2x0+y0≥12
C
由題設(shè),得zmin=a+b=3,zmax=5a+2b=12,聯(lián)立解得a=2,b=1,則z=2x+y.又對(duì)于可行域內(nèi)任意點(diǎn)(x,y),都有3≤z≤12,故3≤2x0+y0≤12.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足|
MA
+
MB
|=
OM
•(
OA
+
OB
)+2.
(1)求曲線C的方程;
(2)動(dòng)點(diǎn)Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為l向:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都不相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西)已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足|
MA
+
MB
|=
MA
•(
OA
+
OB
)+2

(1)求曲線C的方程;
(2)點(diǎn)Q(x0,y0)(-2<x0<2)是曲線C上動(dòng)點(diǎn),曲線C在點(diǎn)Q處的切線為l,點(diǎn)P的坐標(biāo)是(0,-1),l與PA,PB分別交于點(diǎn)D,E,求△QAB與△PDE的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省高三上學(xué)期第二次段考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足||=·()+2.

(1)求曲線C的方程;

(2)點(diǎn)Q(x0,y0)(-2<x0<2)是曲線C上的動(dòng)點(diǎn),曲線C在點(diǎn)Q處的切線為,點(diǎn)P的坐標(biāo)是(0,-1),與PA,PB分別交于點(diǎn)D,E,求△QAB與△PDE的面積之比.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(江西卷解析版) 題型:解答題

已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足.

(1)   求曲線C的方程;

(2)動(dòng)點(diǎn)Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為l向:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都不相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值。若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:解答題

已知三點(diǎn)O(0,0),A(-2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足|+|=+)+2。
(1)求曲線C的方程;
(2)動(dòng)點(diǎn)Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為l,問:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都不相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值,若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案