【題目】神舟五號(hào)飛船成功完成了第一次載人航天飛行,實(shí)現(xiàn)了中國人民的航天夢(mèng)想,某段時(shí)間飛船在太空中運(yùn)行的軌道是一個(gè)橢圓,地球在橢圓的一個(gè)焦點(diǎn)上,如圖所示,假設(shè)航天員到地球最近距離為d1 , 到地球最遠(yuǎn)距離為d2 , 地球的半徑為R,我們想象存在一個(gè)鏡像地球,其中心在神舟飛船運(yùn)行軌道的另外一個(gè)焦點(diǎn)上,上面住著一個(gè)神仙發(fā)射某種神秘信號(hào)需要飛行中的航天員中轉(zhuǎn)后地球人才能接收到,則神秘信號(hào)傳導(dǎo)的最短距離為( )
A.d1+d2+R
B.d2﹣d1+2R
C.d2+d1﹣2R
D.d1+d2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校隨機(jī)調(diào)查80名學(xué)生,以研究學(xué)生愛好羽毛球運(yùn)動(dòng)與性別的關(guān)系,得到下面的列聯(lián)表:
(1)將此樣本的頻率視為總體的概率,隨機(jī)調(diào)查本校的3名學(xué)生,設(shè)這3人中愛好羽毛球運(yùn)動(dòng)的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(2)根據(jù)表3中數(shù)據(jù),能否認(rèn)為愛好羽毛球運(yùn)動(dòng)與性別有關(guān)?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)用支出與銷售額之間有如下的對(duì)應(yīng)數(shù)據(jù)(單位:萬元):
(1)求關(guān)于的線性回歸直線方程;
(2)據(jù)此估計(jì)廣告費(fèi)用為10萬元時(shí)銷售收入的值.
(附:對(duì)于線性回歸方程,其中)
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點(diǎn),ACBC,且AC=BC.
(1)求證:AM平面EBC;
(2)求直線AB與平面EBC所成角的大小,
(3)求二面角A-BE-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(a+1)lnx﹣x2 , .
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)與g(x)在(0,+∞)上的單調(diào)性正好相反. (Ⅰ)對(duì)于 ,不等式 恒成立,求實(shí)數(shù)t的取值范圍;
(Ⅱ)令h(x)=xg(x)﹣f(x),兩正實(shí)數(shù)x1、x2滿足h(x1)+h(x2)+6x1x2=6,證明0<x1+x2≤1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了政府對(duì)過熱的房地產(chǎn)市場(chǎng)進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對(duì)城市人和農(nóng)村人進(jìn)行了買房心理預(yù)測(cè)調(diào)研,用簡單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
買房 | 不買房 | 糾結(jié) | |
城市人 | 5 | 15 | |
農(nóng)村人 | 20 | 10 |
已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(Ⅱ)從參與調(diào)研的城市人中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計(jì)城市人的某項(xiàng)收入指標(biāo),假設(shè)一個(gè)買房人的指標(biāo)算作3,一個(gè)糾結(jié)人的指標(biāo)算作2,一個(gè)不買房人的指標(biāo)算作1,現(xiàn)在從這6人中再隨機(jī)選取3人,令X=再抽取3人指標(biāo)之和,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高一年級(jí)共有學(xué)生640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績不低于80分的人數(shù);
(3)若從樣本中數(shù)學(xué)成績?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,記這兩名學(xué)生成績?cè)赱90,100]內(nèi)的人數(shù)為X,求隨機(jī)變量X的分布列和期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=e2x , g(x)=kx+1(k∈R). (Ⅰ)若直線y=g(x)和函數(shù)y=f(x)的圖象相切,求k的值;
(Ⅱ)當(dāng)k>0時(shí),若存在正實(shí)數(shù)m,使對(duì)任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|2ax+1|,(a∈R),不等式f(x)≤3的解集{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com