【題目】三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠(yuǎn).其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從後表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高幾何?譯文如下:要測量海島上一座山峰A的高度AH,立兩根高三丈的標(biāo)桿BC和DE,前后兩桿相距BD=1000步,使后標(biāo)桿桿腳D與前標(biāo)桿桿腳B與山峰腳H在同一直線上,從前標(biāo)桿桿腳B退行123步到F,人眼著地觀測到島峰,A、C、F三點(diǎn)共線,從后標(biāo)桿桿腳D退行127步到G,人眼著地觀測到島峰,A、E、G三點(diǎn)也共線,則山峰的高度AH=( ) 步(古制:1步=6尺,1里=180丈=1800尺=300步)
A.1250
B.1255
C.1230
D.1200
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點(diǎn),若其歐拉線的方程為,則頂點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=8lnx+15x﹣x2 , 數(shù)列{an}滿足an=f(n),n∈N+ , 數(shù)列{an}的前n項(xiàng)和Sn最大時(shí),n=( )
A.15
B.16
C.17
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐C﹣PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,點(diǎn)M是PC的中點(diǎn),點(diǎn)N在線段AB上,且MN⊥AB.
(1)求AN的長;
(2)求銳二面角P﹣NC﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過原點(diǎn)O(0,0)且與直線y=2x﹣8相切于點(diǎn)P(4,0).
(1)求圓C的方程;
(2)已知直線l經(jīng)過點(diǎn)(4, 5),且與圓C相交于M,N兩點(diǎn),若|MN|=2,求出直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,AC⊥BC,過點(diǎn)C的直線VC垂直于平面ABC,D、E分別為線段VA、VC上異于端點(diǎn)的點(diǎn).
(1)當(dāng)DE⊥平面VBC時(shí),判斷直線DE與平面ABC的位置關(guān)系,并說明理由;
(2)當(dāng)D、E、F分別為線段VA、VC、AB上的中點(diǎn),且VC=2BC時(shí),求二面角B﹣DE﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足2 =an+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=(an+1)2 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com