【題目】(2016·山東)設(shè)f(x)xlnxax2(2a1)x,a∈R.

(1)g(x)f′(x),求g(x)的單調(diào)區(qū)間;

(2)已知f(x)x1處取得極大值,求實(shí)數(shù)a的取值范圍.

【答案】(1)當(dāng)a≤0時(shí),g(x)的單調(diào)遞增區(qū)間為(0,+∞);當(dāng)a0時(shí),g(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)a.

【解析】試題分析:()求導(dǎo)數(shù)

可得,

從而

討論當(dāng)時(shí),當(dāng)時(shí)的兩種情況即得.

)由()知, .分以下情況討論:當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),綜合即得.

試題解析:()由

可得,

,

當(dāng)時(shí), 時(shí), ,函數(shù)單調(diào)遞增;

當(dāng)時(shí), 時(shí), ,函數(shù)單調(diào)遞增,

時(shí), ,函數(shù)單調(diào)遞減.

所以當(dāng)時(shí),函數(shù)單調(diào)遞增區(qū)間為;

當(dāng)時(shí),函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

)由()知, .

當(dāng)時(shí), , 單調(diào)遞減.

所以當(dāng)時(shí), 單調(diào)遞減.

當(dāng)時(shí), , 單調(diào)遞增.

所以x=1處取得極小值,不合題意.

當(dāng)時(shí), ,由()知內(nèi)單調(diào)遞增,

可得當(dāng)當(dāng)時(shí), , 時(shí), ,

所以在(0,1)內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,

所以x=1處取得極小值,不合題意.

當(dāng)時(shí),即時(shí), 在(0,1)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,

所以當(dāng)時(shí), , 單調(diào)遞減,不合題意.

當(dāng)時(shí),即,當(dāng)時(shí), , 單調(diào)遞增,

當(dāng)時(shí), 單調(diào)遞減,

所以fx)在x=1處取得極大值,合題意.

綜上可知,實(shí)數(shù)a的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體中, 平面, , , , , , 的中點(diǎn)

(Ⅰ)求證: ;

(Ⅱ)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,五面體ABCDE,四邊形ABDE是矩形,△ABC是正三角形,AB1,AE2,F是線段BC上一點(diǎn),直線BC與平面ABD所成角為30°,CE∥平面ADF.

(1)試確定F的位置;

(2)求三棱錐ACDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是圓O的直徑,C,D是圓上不同兩點(diǎn),CDABH,ACAD,PA⊥圓O所在平面.

()求證:PBCD;

()PB,PBA,CAD,H到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,放置的邊長(zhǎng)為1的正方形PABC沿x軸滾動(dòng),點(diǎn)B恰好經(jīng)過(guò)原點(diǎn).設(shè)頂點(diǎn)P(x,y)的軌跡方程是yf(x),則對(duì)函數(shù)yf(x)有下列判斷:

①若-2≤x≤2,則函數(shù)yf(x)是偶函數(shù);

②對(duì)任意的x∈R,都有f(x2)f(x2);

③函數(shù)yf(x)在區(qū)間[2,3]上單調(diào)遞減;

④函數(shù)yf(x)在區(qū)間[4,6]上是減函數(shù).

其中判斷正確的序號(hào)是________(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),f(x1)為奇函數(shù),f(0)0,當(dāng)x(0,1]時(shí),f(x)log2x,則在區(qū)間(89)內(nèi)滿足方程f(x)2的實(shí)數(shù)x(  )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是ABAA1的中點(diǎn).

求證:(1)E、C、D1、F四點(diǎn)共面;

(2)CE、D1F、DA三線共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=-1,過(guò)定點(diǎn)M(m,0)(m>0)作斜率為k的直線l交拋物線C于A,B兩點(diǎn),E是M點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn),若直線AE和BE的斜率分別為k1,k2,則k1+k2________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為 (θ為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為ρsin(θ+)=t(其中t為常數(shù)).

(Ⅰ)若曲線N與曲線M只有一個(gè)公共點(diǎn),求t的值;

(Ⅱ)當(dāng)t=-1時(shí),求曲線M上的點(diǎn)與曲線N上的點(diǎn)的最小距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案