【題目】某調查機構對全國互聯(lián)網(wǎng)行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結論正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中從事技術和運營崗位的人數(shù)占總人數(shù)的三成以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總人數(shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)90后比80后多

【答案】ABC

【解析】

根據(jù)扇形統(tǒng)計圖和條狀圖,逐一判斷選項,得出答案.

選項A:因為互聯(lián)網(wǎng)行業(yè)從業(yè)人員中,“90占比為56%,

其中從事技術和運營崗位的人數(shù)占的比分別為39.6%和17%,

“90從事技術和運營崗位的人數(shù)占總人數(shù)的

.“80“80

中必然也有從事技術和運營崗位的人,則總的占比一定超過三成,

故選項A正確;

選項B:因為互聯(lián)網(wǎng)行業(yè)從業(yè)人員中,“90占比為56%,

其中從事技術崗位的人數(shù)占的比為39.6%,則“90從事技術

崗位的人數(shù)占總人數(shù)的.“80“80

中必然也有從事技術崗位的人,則總的占比一定超過20%,故選項B正確;

選項C“90從事運營崗位的人數(shù)占總人數(shù)的比為

大于“80的總人數(shù)所占比3%,故選項C正確;

選項D“90從事技術崗位的人數(shù)占總人數(shù)的,

“80的總人數(shù)所占比為41%,條件中未給出從事技術崗位的占比,

故不能判斷,所以選項D錯誤.

故選:ABC.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,點到兩點的距離之和為4,設點的軌跡為,直線交于兩點。

(Ⅰ)寫出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過兩點,且圓心在直線上.

(1)求圓的方程;

(2)已知過點的直線與圓相交截得的弦長為,求直線的方程;

(3)已知點,在平面內是否存在異于點的定點,對于圓上的任意動點,都有為定值?若存在求出定點的坐標,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,直線,設圓的半徑為1,圓心在上.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】5張獎券中有2張是中獎的,先由甲抽1張,然后由乙抽1張,求:

1)甲中獎的概率;

2)甲乙都中獎的概率

3)只有乙中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2x的焦點為F,平行于x軸的兩條直線l1,l2分別交C于A,B兩點,交C的準線于P,Q兩點.

(1)若F在線段AB上,R是PQ的中點,證明:AR∥FQ;

(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱臺的底面是正三角形,平面平面,,.

(Ⅰ)求證:;

(Ⅱ)若和梯形的面積都等于,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案