已知點(diǎn)P是圓x2+y2=1上任意一點(diǎn),過點(diǎn)P作y軸的垂線,垂足為Q,點(diǎn)R滿足,記點(diǎn)R的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)A(0,1),點(diǎn)M、N在曲線C上,且直線AM與直線AN的斜率之積為,求△AMN的面積的最大值.
【答案】分析:(I)根據(jù),確定P,R坐標(biāo)之間的關(guān)系,利用點(diǎn)P是圓x2+y2=1上任意一點(diǎn),可得點(diǎn)R的軌跡方程;
(Ⅱ)(1)當(dāng)直線MN的斜率不存在時(shí),不合題意;
(2)當(dāng)直線MN的斜率存在時(shí),確定直線MN過定點(diǎn)T(0,-3),再計(jì)算△AMN的面積,利用換元法,借助于基本不等式,即可求得△AMN的面積的最大值.
解答:解:(I)設(shè)R(x,y),P(x,y),則Q(0,y).
,∴,
∵點(diǎn)P是圓x2+y2=1上任意一點(diǎn),
,
∴點(diǎn)R的軌跡方程:.…(6分)
(Ⅱ)(1)當(dāng)直線MN的斜率不存在時(shí),設(shè)MN:
,,∴,不合題意.…(7分)
(2)當(dāng)直線MN的斜率存在時(shí),設(shè)lMN:y=kx+b,M(x1,y1),N(x2,y2
聯(lián)立方程,得(1+3k2)x2+6kbx+3b2-3=0.
∴△=12(3k2-b2+1)>0,,.…(9分)
,

,代入上式,得b=-3.
∴直線MN過定點(diǎn)T(0,-3).…(11分)
=.…(13分)
,即3k2=t2+8,∴
當(dāng)且僅當(dāng)t=3時(shí),.…(15分)
點(diǎn)評(píng):本題考查軌跡方程的求解,考查三角形的面積,解題的關(guān)鍵是利用代入法求軌跡方程,構(gòu)建面積函數(shù),利用基本不等式求最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是圓x2+y2=1上一動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
QM
QP
(λ為非零常數(shù))的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若存在過點(diǎn)N(
1
2
,0)
的直線l與曲線C相交于A、B兩點(diǎn),且
OA
OB
=0(O為坐標(biāo)原點(diǎn)),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
QM
=2
QP
的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是圓x2+y2=1上任意一點(diǎn),過點(diǎn)P作y軸的垂線,垂足為Q,點(diǎn)R滿足
RQ
=
3
PQ
,記點(diǎn)R的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)A(0,1),點(diǎn)M、N在曲線C上,且直線AM與直線AN的斜率之積為
2
3
,求△AMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件數(shù)學(xué)公式的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷3(文科)(解析版) 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案