【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出.某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)x(噸),用水量不超過 x 的部分按平價收費,超出 x 的部分按議價收費.為了了解全市居民用水量的分布情況,通過抽樣,獲得了 100 位居民某年的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 a 的值;
(Ⅱ)若該市政府希望使 85%的居民每月的用水量不超過標(biāo)準(zhǔn) x(噸),估計 x 的值,并說明理由;
(Ⅲ)已知平價收費標(biāo)準(zhǔn)為 4 元/噸,議價收費標(biāo)準(zhǔn)為 8元/噸.當(dāng) x=3時,估計該市居民的月平均水費.(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替)
【答案】解:(Ⅰ)由頻率分布直方圖,
得:(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,
解得:a=0.30;
(Ⅱ)∵前6組的頻率之和是(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,
而前5組的頻率之和為(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,
∴2.5≤x<3,
由0.3×(x﹣2.5)=0.85﹣0.73,解得:x=2.9,
因此,估計月用水量標(biāo)準(zhǔn)為2.9噸時,
85%的居民每月的用水量不超過標(biāo)準(zhǔn);
(Ⅲ)設(shè)居民月用水量為t噸,相應(yīng)的水費為y元,
則y= ,即y= ,
由題設(shè)條件及月均用水量的頻率分布直方圖,
得居民每月的水費數(shù)據(jù)分組與頻率分布表如下:
組號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
分組 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10) | [10,12) | [12,16) | [16,20) | [20,24) |
頻率 | 0.04 | 0.08 | 0.15 | 0.20 | 0.26 | 0.15 | 0.06 | 0.04 | 0.02 |
根據(jù)題意,該市民的月平均水費估計為:
1×0.04+3×0.08+5×0.15+7×0.20+9×0.26+11×0.15+14×0.06+18×0.04+22×0.02=8.42(元).
【解析】(I)根據(jù)頻率和為1,列出方程求出a的值;(II)求出月均用水量小于2.5噸和小于3噸的百分比,計算出有85%的居民每月用水量不超過標(biāo)準(zhǔn)的值;(III)根據(jù)頻率分布直方圖,求出當(dāng) x=3時,估計該市居民的月平均水費.
【考點精析】根據(jù)題目的已知條件,利用頻率分布直方圖的相關(guān)知識可以得到問題的答案,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于命題的說法錯誤的是( )
A.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”
B.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
C.若命題P:n∈N,2n>1000,則﹣P:n∈N,2n≤1000
D.命題“x∈(﹣∞,0),2x<3x”是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c
(1)若a,b,c成等比數(shù)列, ,求 的值;
(2)若A,B,C成等差數(shù)列,且b=2,設(shè)A=α,△ABC的周長為l,求l=f(α)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 的兩條漸近線分別為l1 , l2 , 經(jīng)過右焦點F垂直于l1的直線分別交l1 , l2 于 A,B 兩點.若| |,| |,| |成等差數(shù)列,且 與 反向,則該雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有1 000根某品種的棉花纖維,從中隨機(jī)抽取50根,纖維長度(單位:mm)的數(shù)據(jù)分組及各組的頻數(shù)見右上表,據(jù)此估計這1 000根中纖維長度不小于37.5 mm的根數(shù)是 .
纖維長度 | 頻數(shù) |
[22.5,25.5) | 3 |
[25.5,28.5) | 8 |
[28.5,31.5) | 9 |
[31.5,34.5) | 11 |
[34.5,37.5) | 10 |
[37.5,40.5) | 5 |
[40.5,43.5] | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】C.[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系 中,已知直線 (l為參數(shù))與曲線 ( 為參數(shù))相交于 , 兩點,求線段 的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O1:(x﹣2)2+y2=16和圓O2:x2+y2=r2(0<r<2),動圓M與圓O1、圓O2都相切,切圓圓心M的軌跡為兩個橢圓,這兩個橢圓的離心率分別為e1 , e2(e1>e2),則e1+2e2的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來我國電子商務(wù)行業(yè)迎來篷布發(fā)展的新機(jī)遇,2015年雙11期間,某購物平臺的銷售業(yè)績高達(dá)918億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進(jìn)行統(tǒng)計,對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(1)是否可以在犯錯誤概率不超過0.1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(2)若將頻率視為概率,某人在該購物平臺上進(jìn)行的5次購物中,設(shè)對商品和服務(wù)全好評的次數(shù)為隨機(jī)變量X: ①求對商品和服務(wù)全好評的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
( ,其中n=a+b+c+d)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com