【題目】現(xiàn)有1 000根某品種的棉花纖維,從中隨機抽取50根,纖維長度(單位:mm)的數(shù)據(jù)分組及各組的頻數(shù)見右上表,據(jù)此估計這1 000根中纖維長度不小于37.5 mm的根數(shù)是 .
纖維長度 | 頻數(shù) |
[22.5,25.5) | 3 |
[25.5,28.5) | 8 |
[28.5,31.5) | 9 |
[31.5,34.5) | 11 |
[34.5,37.5) | 10 |
[37.5,40.5) | 5 |
[40.5,43.5] | 4 |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=xex .
(1)求f(x)的極值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若(2a﹣c)cosB=bcosC,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,直線的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為 .
(1)求曲線C的直角坐標(biāo)方程,并指出其表示何種曲線;
(2)設(shè)直線l與曲線C交于A,B兩點,若點P的直角坐標(biāo)為(1,0),試求當(dāng) 時,|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出.某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)x(噸),用水量不超過 x 的部分按平價收費,超出 x 的部分按議價收費.為了了解全市居民用水量的分布情況,通過抽樣,獲得了 100 位居民某年的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 a 的值;
(Ⅱ)若該市政府希望使 85%的居民每月的用水量不超過標(biāo)準(zhǔn) x(噸),估計 x 的值,并說明理由;
(Ⅲ)已知平價收費標(biāo)準(zhǔn)為 4 元/噸,議價收費標(biāo)準(zhǔn)為 8元/噸.當(dāng) x=3時,估計該市居民的月平均水費.(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , ,其中e為自然對數(shù)的底數(shù).
(1)求函數(shù) 在x 1處的切線方程;
(2)若存在 ,使得 成立,其中 為常數(shù),
求證: ;
(3)若對任意的 ,不等式 恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則a2017= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(1)若函數(shù)g(x)=f(x)﹣ax在其定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的極小值;
(3)設(shè)F(x)=2f(x)﹣3x2﹣kx(k∈R),若函數(shù)F(x)存在兩個零點m,n(0<m<n),且2x0=m+n.問:函數(shù)F(x)在點(x0 , F(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+m|x+a|. (Ⅰ)當(dāng)m=a=﹣1時,求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立時,實數(shù)a的取值范圍是{a|a≤﹣3或a≥3},求實數(shù)m的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com