【題目】已知是拋物線的焦點,點是不在拋物線上的一個動點,過點向拋物線作兩條切線,切點分別為.
(1)如果點在直線上,求的值;
(2)若點在以為圓心,半徑為4的圓上,求的值.
【答案】(1)1(2)16
【解析】試題分析:(1)根據(jù)拋物線定義得,設,利用同一法可得切點弦AB方程.聯(lián)立切點弦方程與拋物線方程,利用韋達定理代入可得的值;(2) , 的方程為. ,聯(lián)立切點弦方程與拋物線方程,利用韋達定理代入可得的值.
試題解析:解:因為拋物線的方程為,所以, 所以切線的方程為,即①,同理切線的方程為②,設,則由①②得以及,由此得直線的方程為.
(1)由于點是直線上的一個動點,所以,即直線的方程為,因此它過拋物線的焦點.
當時, 的方程為,此時,所以;
當時,把直線方程代入拋物線方程得到,從而有,所以.
綜上, .
(2)由(1)知切線的方程為,切線的方程為,聯(lián)立得點 .
設直線的方程為,代入得.因此 ,所以點的坐標為,由題意
,所以,從而
.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若 =3 ,則|QF|= , 點Q的坐標為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著國民生活水平的提高,利用長假旅游的人越來越多.某公司統(tǒng)計了2012到2016年五年間本公司職員每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計數(shù)據(jù)如下表所示:
(Ⅰ)從這5年中隨機抽取兩年,求外出旅游的家庭數(shù)至少有1年多于20個的概率;
(Ⅱ)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程,判斷它們之間是正相關(guān)還是負相關(guān);并根據(jù)所求出的直線方程估計該公司2019年春節(jié)期間外出旅游的家庭數(shù).
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知橢圓的右焦點為,以橢圓與雙曲線兩條漸近線的四個交點為頂點的四邊形的面積為.
(1)求橢圓的方程;
(2)若點為橢圓上的兩點(不同時在軸上),點,證明:存在實數(shù),當三點共線時,為常數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位建造一間地面面積為12m2的背面靠墻的矩形小房子,由于地理位置的限制,房子側(cè)面的長度x不得超過am.房屋正面的造價為400元/m2 , 房屋側(cè)面的造價為150元/m2 , 屋頂和地面的造價費用合計為5800元,如果墻高為3m,且不計房屋背面的費用.當側(cè)面的長度為多少時,總造價最低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 為正方形, 為直角梯形, ,平面平面,且.
(1)若和延長交于點,求證: 平面;
(2)若為邊上的動點,求直線與平面所成角正弦值的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為實數(shù),函數(shù)f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).
(1)若f(0)≤1,求a的取值范圍;
(2)求f(x)在R上的單調(diào)區(qū)間(無需使用定義嚴格證明,但必須有一定的推理過程);
(3)當a>2時,求函數(shù)g(x)=f(x)+|x|在R上的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com