【題目】
已知橢圓的右焦點(diǎn)為,以橢圓與雙曲線兩條漸近線的四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為.
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓上的兩點(diǎn)(不同時(shí)在軸上),點(diǎn),證明:存在實(shí)數(shù),當(dāng)三點(diǎn)共線時(shí),為常數(shù).
【答案】見解析
【解析】
(1)雙曲線的漸近線方程為.
設(shè)直線與橢圓在第一象限的交點(diǎn)為,
把代入橢圓的方程,可得,
易得橢圓與雙曲線兩條漸近線的四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為,(2分)
所以,所以,即,
因?yàn)?/span>,所以,
即,解得(負(fù)值舍去),所以,
所以橢圓的方程為.(5分)
(2)因?yàn)?/span>三點(diǎn)共線,且不同時(shí)在軸上,所以直線的斜率不為,
設(shè),代入橢圓方程消去,得.
設(shè),則.(6分)
.(7分)
,
.
所以
.(10分)
只要,上式即為,與無關(guān).(11分)
由,解得,此時(shí).
即存在實(shí)數(shù),當(dāng)三點(diǎn)共線時(shí),為常數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=f(x)的圖象向右平移 單位得到函數(shù)y=cos2x的圖象,則f(x)=( )
A.﹣sin2x
B.cos2x
C.sin2x
D.﹣cos2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差s 和s ,并由此分析兩組技工的加工水平;
(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人加工的合格零件個(gè)數(shù)之和大于17,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 是(﹣∞,+∞)上的增函數(shù),那么a的取值范圍是( )
A.[ ,3)
B.(0,3)
C.(1,3)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在的安卓手機(jī)盛行一款“心有靈犀”的猜數(shù)字游戲,具體的規(guī)則如下:
玩家隨機(jī)輸入0~5中的三位數(shù)字(數(shù)字不重復(fù)),按“OK”鍵確定答案是否正確,手機(jī)會(huì)給出“xAyB”的提示,其中“xA”表示你輸入的三位數(shù)字中,有“x”個(gè)數(shù)字和位置都與答案相同,其中“yB”表示你輸入的三位數(shù)字中,有“y”個(gè)數(shù)字與答案相同,但是位置不同,例如:答案為“012”,當(dāng)你輸入“132”時(shí)會(huì)顯示:“1A1B”.
(1)當(dāng)你第一次輸入時(shí),手機(jī)顯示“1A1B”的概率為多少?
(2)當(dāng)你第一次輸入時(shí),且手機(jī)顯示“xA2B”時(shí),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖所示,正方形與矩形所在平面互相垂直,.
(1)若點(diǎn),分別為,的中點(diǎn),求證:平面平面;
(2)在線段上是否存在一點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線的焦點(diǎn),點(diǎn)是不在拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)向拋物線作兩條切線,切點(diǎn)分別為.
(1)如果點(diǎn)在直線上,求的值;
(2)若點(diǎn)在以為圓心,半徑為4的圓上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的函數(shù)f(x)滿足:
①對(duì)任意x,y∈R,都有:f(x+y)=f(x)+f(y)﹣1;
②當(dāng)x<0時(shí),f(x)>1.
(Ⅰ)試判斷函數(shù)f(x)﹣1的奇偶性;
(Ⅱ)試判斷函數(shù)f(x)的單調(diào)性;
(Ⅲ)若不等式f(a2﹣2a﹣7)+ >0的解集為{a|﹣2<a<4},求f(5)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當(dāng)x<0時(shí),xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com