【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),a∈R),以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ
(1)求直線l的普通方程及曲線C的直角坐標(biāo)方程;
(2)若直線l過點(diǎn)P(1,1)且與曲線C交于AB兩點(diǎn),求|PA|+|PB|
【答案】(1)l:x+y﹣a=0,C:y2=2x;(2)
【解析】
(1) 消去參數(shù)t可得直線l的普通方程,利用極坐標(biāo)與直角坐標(biāo)的公式化簡求解可得曲線C的直角坐標(biāo)方程
(2)設(shè)直線l的參數(shù)方程為,再代入拋物線的方程,利用直線參數(shù)方程的幾何意義求解即可.
(1)由消去參數(shù)t可得直線l的普通方程為:x+y﹣a=0,
由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ可得曲線C的直角坐標(biāo)方程為:y2=2x.
(2)將P(1,1)代入x+y﹣a=0可得a=2,
所以直線l的參數(shù)方程為(t為參數(shù))
將其代入曲線C的普通方程得:t2+4﹣2=0,設(shè)A,B對應(yīng)的參數(shù)為t1,t2,
則t1+t2=﹣4,t1t2=﹣2<0,∴|PA|+|PB|=|t1|+|t2|=|t1﹣t2|===.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的焦點(diǎn)為F且斜率為k的直線l交曲線C于、兩點(diǎn),交圓于M,N兩點(diǎn)(A,M兩點(diǎn)相鄰).
(1)求證:為定值;
(2)過A,B兩點(diǎn)分別作曲線C的切線,,兩切線交于點(diǎn)P,求與面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,且,,分別為,的中點(diǎn).
(1)求證:平面;
(2)求直線和平面所成角的正切值;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中《方田》章有弧田面積計(jì)算問題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公式為:弧田面積(弦乘矢+矢乘矢),弧田是由圓。ê喎Q為弧田的弧)和以圓弧的端點(diǎn)為端點(diǎn)的線段(簡稱 (弧田的弦)圍成的平面圖形,公式中“弦”指的是弧田的弦長,“矢”等于弧田的弧所在圓的半徑與圓心到弧田的弦的距離之差.現(xiàn)有一弧田,其弦長等于,其弧所在圓為圓,若用上述弧田面積計(jì)算公式計(jì)算得該弧田的面積為,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:=1(a>0,b>0)的左右焦點(diǎn)為F1,F2過點(diǎn)F1的直線l與雙曲線C的左支交于AB兩點(diǎn),△BF1F2的面積是△AF1F2面積的三倍,∠F1AF2=90°,則雙曲線C的離心率為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣3|+|x+2|
(1)求不等式f(x)≤5的解集;
(2)若關(guān)于x的不等式f(x)≤a﹣|x|在區(qū)間[﹣1,2]上恒成立,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某工廠每天固定成本是4萬元,每生產(chǎn)一件產(chǎn)品成本增加100元,工廠每件產(chǎn)品的出廠價(jià)定為元時(shí),生產(chǎn)件產(chǎn)品的銷售收入是(元),為每天生產(chǎn)件產(chǎn)品的平均利潤(平均利潤=總利潤/總產(chǎn)量).銷售商從工廠每件元進(jìn)貨后又以每件元銷售, ,其中為最高限價(jià), 為銷售樂觀系數(shù),據(jù)市場調(diào)查, 是由當(dāng)是, 的比例中項(xiàng)時(shí)來確定.
(1)每天生產(chǎn)量為多少時(shí),平均利潤取得最大值?并求的最大值;
(2)求樂觀系數(shù)的值;
(3)若,當(dāng)廠家平均利潤最大時(shí),求與的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,,為的中點(diǎn),點(diǎn)在平面內(nèi)的射影在線段上.
(1)求證:;
(2)若是正三角形,求三棱柱的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為矩形,,,為線段上的動點(diǎn).
(1)若為線段的中點(diǎn),求證:平面;
(2)若三棱錐的體積記為,四棱錐的體積記為,當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com