【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R
(1)當a=﹣4時,且x∈[0,2],求函數(shù)f(x)的值域;
(2)若f(x)>0在(0,+∞)對任意的實數(shù)x恒成立,求實數(shù)a的取值范圍.

【答案】
(1)解:當a=﹣4時,令t=2x,

由x∈[0,2],得t∈[1,4],y=t2﹣4t+3=(t﹣2)2﹣1

當t=2時,ymin=﹣1;當t=4時,ymax=3.

∴函數(shù)f(x)的值域為[﹣1,3]


(2)解:設t=2x,則t>1,f(x)>0在(0,+∞)對任意的實數(shù)x恒成立

等價于t2+at+3>0在t∈(1,+∞)上恒成立,

∴a>﹣(t+ )在(1,+∞)上恒成立,

∴a>[﹣(t+ )]max,

設g(t)=﹣(t+ ),t>1,函數(shù)g(t)在(1, )上單調(diào)遞增,在( ,+∞)上單調(diào)遞減

∴g(t)max=g( )=﹣2

∴a>﹣2


【解析】(1)把a=﹣4代入函數(shù)解析式,換元后利用配方法求函數(shù)f(x)的值域;(2)令t=2x , 由x的范圍得到t的范圍,則問題轉化為t2+at+3>0在t∈(1,+∞)上恒成立,構造函數(shù),求出函數(shù)的最值即可.
【考點精析】解答此題的關鍵在于理解函數(shù)的值域的相關知識,掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)滿足:f(﹣x)+f(x)=ex+ex , 則稱f(x)為“e函數(shù)”.
(1)試判斷f(x)=ex+x3是否為“e函數(shù)”,并說明理由;
(2)若f(x)為“e函數(shù)”且 ,
(ⅰ)求證:f(x)的零點在 上;
(ⅱ)求證:對任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設冪函數(shù)f(x)=(a﹣1)xk(a∈R,k∈Q)的圖象過點
(1)求k,a的值;
(2)若函數(shù)h(x)=﹣f(x)+2b +1﹣b在[0,2]上的最大值為3,求實數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=a﹣ ,x∈R,a為常數(shù);
(1)當a=1時,判斷f(x)的奇偶性;
(2)求證:f(x)是R上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的程序框圖運行程序后,輸出的結果是31,則判斷框中的整數(shù)H=(

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知多面體中,四邊形為平行四邊形, ,且, , .

(1)求證:平面平面;

(2)若,直線與平面夾角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的中心在原點,離心率為 ,右焦點到直線x+y+ =0的距離為2.
(1)求橢圓E的方程;
(2)橢圓下頂點為A,直線y=kx+m(k≠0)與橢圓相交于不同的兩點M、N,當|AM|=|AN|時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣bx+c,f(x)的對稱軸為x=1且f(0)=﹣1.
(1)求b,c的值;
(2)當x∈[0,3]時,求f(x)的取值范圍.
(3)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC

(1)求證:A,B,C,P四點共圓;
(2)若∠CAD= ,AB=1,求四邊形ABCP的面積.

查看答案和解析>>

同步練習冊答案