求數(shù)列項(xiàng)和.

.

解析試題分析:本試題是典型的一個(gè)等差數(shù)列與一個(gè)等比數(shù)列乘積的前項(xiàng)和問(wèn)題,這種題型采用的求和方法是錯(cuò)位相減法,先附值得到,進(jìn)而在該等式兩邊同乘公比又得一個(gè)式子,兩式作差并應(yīng)用等比數(shù)列的前項(xiàng)和公式進(jìn)行化簡(jiǎn)運(yùn)算即可計(jì)算出數(shù)列項(xiàng)和.
    ①          3分
    ②          6分
①-②         10分
                         13分.
考點(diǎn):1.數(shù)列的前項(xiàng)和;2.等比數(shù)列的前項(xiàng)和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列的各項(xiàng)均為正數(shù),且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的首項(xiàng)。
(1)求證:是等比數(shù)列,并求出的通項(xiàng)公式;
(2)證明:對(duì)任意的
(3)證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2014·隨州模擬)已知等比數(shù)列{an}滿足an+1+an=9·2n-1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若不等式Sn>kan-2對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列的各項(xiàng)均為正數(shù),且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè) 求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知成等比數(shù)列, 公比為, 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)任意實(shí)數(shù)列,定義它的第項(xiàng)為,假設(shè)是首項(xiàng)是公比為的等比數(shù)列.
(1)求數(shù)列的前項(xiàng)和;
(2)若,.
①求實(shí)數(shù)列的通項(xiàng);
②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和
(1)求通項(xiàng)公式an;(2)令,求數(shù)列{bn}前n項(xiàng)的和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列{an}的所有項(xiàng)均為正數(shù),首項(xiàng)a1=1,且a4,3a3,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an+1λan}的前n項(xiàng)和為Sn,若Sn=2n-1(n∈N*),求實(shí)數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案